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Abstract
Many economic and financial time series are thought to exhibit long-memory be-

havior while nevertheless remaining covariance stationary. Changes in persistence have
been widely documented though little formal analysis has been undertaken in the case
of otherwise covariance stationary series. Minimal work has been done with regard to
detecting change in the memory parameter d (or the Hurst parameter H = d + 1/2)
of such series while the potential presence of such change has important implications
for inference, forecasting and model building. I propose here a semiparametric test for
change in d, which I dub the Range-Ratio Test (RRT). It detects changes in d when
d remains in a region of stationarity [0, 1/2), rather than testing against I(0) or I(1)
alternatives. This new test’s main advantage over the few existing tests for similar
change in this persistence parameter is that it does not require specification of param-
eters affecting the spectral density at frequencies distant from zero. Asymptotic results
show the RRT to be consistent with a simple null limiting distribution that is free of
nuisance parameters for a wide range of null and alternative hypotheses. Monte Carlo
simulations show that it performs well in moderately sized samples though care should
be taken when interpreting the test statistic for initial estimates of d near the null
hypothesis boundary of stationarity. The simulations also shed light on the trimming
parameter that should be used for each sample size/d estimate pair. Finally, a short
empirical application of the RRT is conducted providing evidence that the S&P 500
stock market volatility series exhibits rather frequent changes in memory.
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1 Introduction

Many economic and financial time series are thought to exhibit long-memory behavior while

nevertheless remaining covariance stationary. That is, although stationary, they exhibit

a higher level of persistence than predicted by standard linear time series models. This

phenomenon has been documented widely in volatility series and other series composed of

powers of absolute returns.

In the time domain, a stationary long-memory process is characterized by a hyperbolically

decaying autocorrelation function. For the covariance stationary process Xt, this can be

described in the time domain as

γX(h) = Cov(Xt, Xt+h) ≈ cX(h)h2d−1 as h→∞,

where ≈ denotes approximate equality, cX(·) is some slowly-varying function for large values

of its argument and d ∈ (−1/2, 1/2). For d ∈ (0, 1/2), this condition implies that the

autocorrelations of Xt are not summable and, given mild conditions on cX(·), the spectral

density function of Xt follows

fX(λ) =
1

2π

∞∑
h=−∞

γX(h)e−iλh ≈ GX |λ|−2d as λ→ 0, (1)

where GX is some strictly positive constant. Note that short-memory processes (d = 0)

with summable autocorrelations and finite spectral densities at zero are nested in these

descriptions.

Many authors have proposed techniques to estimate the memory parameter (d) of a sta-

tionary process. These techniques fall under two broad categories: fully parametric and

semiparametric. Fully parametric estimates of d require full specification of model parame-

ters, including those that affect the spectral density at frequencies distant from zero. See Fox

and Taqqu (1986) and Dahhaus (1989) for examples of parametric estimation techniques.

Semiparametric techniques for estimating d have been more influential in recent years be-

cause they are robust to misspecification of parameters that affect the spectral density at

frequencies distant from zero. See Geweke and Porter-Hudak (1983), Robinson (1995a)

and Robinson (1995b) for examples and distributional properties of popular semiparametric

estimation techniques.

In recent years, a large amount of effort has been devoted to analyzing the properties

of short-memory processes with occasional breaks in mean and showing that they exhibit

many of the same features as long-memory processes (e.g., see Diebold and Inoue, 2001
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and Granger and Hyung, 2004). That is, such processes exhibit a hyperbolically decaying

autocorrelation function and a spectral density function with a pole at the zero frequency

that is still consistent with covariance stationarity (e.g., not a unit root process). In a current

working paper, Perron and Qu (2008) argued that many financial time series that have been

previously characterized as long-memory processes are better modeled by short-memory

processes contaminated by level shifts. It has also been noted that tests for structural change

in mean spuriously detect change when the underlying process has long-memory rather than

short-memory with occasional breaks (e.g., Granger and Hyung, 2004). However, scant

attention has been paid to the properties of long-memory processes that exhibit change in

their memory parameter or whether economic time series exhibit such behavior.1

Relatedly, minimal work has been done with regards to detecting a change in d when

allowing d to take on any value between zero and 1/2 under the null hypothesis. Most

tests for changes in persistence have focused on changes between trend-stationarity and

difference stationarity, assuming the time series is generated by an I(0) or I(1) process under

the null and alternative hypotheses (e.g., Kim, 2000 and Leybourne et al., 2003). To my

knowledge, there are only three published works providing tests for this more general type of

change in memory: Beran and Terrin (1996), Horváth and Shao (1999) and Horváth (2001).2

However, Beran and Terrin (1996) incorrectly specified the null limiting distribution of their

test statistic and were corrected by Horváth and Shao (1999) who proposed the same test

statistic while obtaining the correct limiting distribution. Moreover, Horváth’s (2001) test

statistic is quite closely related to this same statistic. Both of the two existing published test

statistics are based on fully parametric Whittle’s estimates, subjecting them to the criticism

of being sensitive to misspecification, discussed above. Another shortcoming of existing work

on this topic is the total lack of investigation into the finite sample properties of these tests.

As shown in Section 5, certain financial time series indeed appear to exhibit changes

in their memory parameters. The dearth of literature on this subject thus poses a major

problem for econometric analysis. Given that many economically relevant time series exhibit

long-memory behavior and/or structural change, determining whether there is a change in

the memory parameter of a given series is both practically important and intuitively appeal-

1Beran and Terrin (1996) have noted that visual observation indicates that a Nile River flood level time
series exhibits changes in its memory parameter.

2In a current working paper, Bardet and Kammoun (2008) also describe a testing procedure based on
wavelet analysis. However, their approach is limited by the fact that it only applies to continuous time
Gaussian processes. The majority of economic or financial series (typically volatility series) to which long-
memory applies are characterized by high excess kurtosis.
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ing. The potential occurrence of such change is important for inference, forecasting, model

building and empirical verification of economic theory. In fact, Bollerslev and Mikkelsen

(1996) have shown that the long-memory properties of stock market volatility have impor-

tant implications for asset pricing.

In this paper, I propose a semiparametric test for change in the memory parameter d. The

test has power against change in d when d remains in the region of stationarity [0, 1/2) under

both the null and alternative hypotheses rather than assuming d is I(0) or I(1) under the null

or alternative. This new test’s main advantage over the two existing tests mentioned above

is that it does not require specification of parameters affecting only the short-run dynamics

of a process, making it applicable in much more general settings. The test has a simple null

limiting distribution free of nuisance parameters, requiring no bootstrap procedure. It can

be applied to a very wide range of Gaussian or non-Gaussian processes.

The remainder of this paper is structured as follows: Section 2 is devoted to summarizing

the preliminaries needed for the construction of a consistent test statistic; Section 3 devel-

ops the statistic, its null limiting distribution and its consistency property along with an

interesting theorem describing the asymptotic behavior of the memory parameter estimate

when the memory parameter changes; Section 4 provides an overview of the finite sample

behavior of the statistic; Section 5 provides a brief empirical application of the RRT to stock

market volatility data, providing evidence for changes in the memory parameter; Section 6

concludes with a discussion of possible extensions and future work related to this research;

an appendix contains technical derivations including proofs of the main results; and the final

pages of this paper are reserved for tables and graphs.

2 Preliminary Results

The test statistic I propose makes heavy use of a result that applies to a large class of

processes satisfying (1). Let the process {Xt} satisfy the following set of conditions:3 εi ∼
i.i.d.(0, σ2

ε) with σ2
ε <∞ and for all k,

Xk − EX1 =
k∑

i=−∞

ck−iεi, where ck ≈ Ldk
d−1 as k →∞, (2)

where Ld is a constant that depends on the persistence parameter. A process satisfying

(2) will exhibit long-memory as defined by (1). Almost all long-memory models used in

3There are many other sets of regularity conditions leading to the same result, see Davydov, 1970, Taqqu,
1975, Chan and Terrin, 1995 and Csőrgo and Mielniczuk, 1995 for examples.
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econometric analysis satisfy this condition. Among these, the popular fractionally integrated

autoregressive moving average (ARFIMA), fractionally integrated generalized autoregressive

conditional heteroskedasticity (FIGARCH) and fractionally integrated stochastic volatility

(FISV) processes satisfy (2) when they are stationary.

Now, define SbTrc as SbTrc =
∑bTrc

t=1 (Xt − EX1) and σ2
T as σ2

T = Var(ST ), where T is the

sample size and 0 ≤ r ≤ 1. The result of Avram and Taqqu (1987) on which the test statistic

crucially depends is given by the following functional central limit theorem (FCLT):

(1/σT )SbTrc ⇒ Bd(r), (3)

where above and hereafter “⇒” denotes weak convergence in distribution under the Skoro-

hod topology and Bd(·) is fractional Brownian motion on the unit interval with persistence

parameter d. All convergence results in this paper are taken to be as T →∞ unless other-

wise stated. Fractional Brownian motion on the unit interval with persistence parameter d

is defined in terms of standard Brownian motion on the unit interval, denoted by B(·), by

Samorodnitsky and Taqqu (1994)4 as

Bd(r) =
1

A(d)

∫ r

0

(r − s)d dB(s), where A(d) =

{
1

2d+ 1
+

∫ ∞
0

[
(1 + x)d − xd

]2
dx

} 1
2

.

It can be regarded as the approximate dth fractional derivative of standard Brownian motion.

Avram and Taqqu (1987) have also also established that σT = Op(T
d+ 1

2 ) so that partial sums

SbTrc of the above form are uniformly Op(T
d+ 1

2 ) variates.

The test statistic proposed in this paper is based upon the popular rescaled range pro-

cedure for testing the null hypothesis of short-memory (d = 0) versus the alternative of

long-memory (d > 0), which examines the following quantity:

RS =

[
max

0≤n≤T
S∗n − min

0≤n≤T
S∗n

]
, where S∗n =

n∑
t=1

(yt − ȳ)

and ȳ is the sample mean of the process yt. Statistics based upon this quantity and variants

of it have enjoyed a long period of prevalence in the literature and they include the R/S-

type tests of Hurst (1951), Mandelbrot and Taqqu (1979) and Lo (1991); the KPSS test

introduced by Kwiatkowski et al. (1992) and the relatively new V/S test of Giraitis et al.

(2003).

4Note: there are discrepancies in the literature concerning the definition of fractional Brownian motion.
Marinucci and Robinson (1999) have dealt with this issue extensively. Here I make use of the proper definition
for the fractional Brownian motion for this context in (3).
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Before introducing the semiparamteric test statistic for change in memory, some quanti-

ties must be defined and I introduce some preliminary results to impart the intuition behind

the final statistic onto the reader. Let ε ∈ (0, 1/2), the trimming parameter of the statistic.

Consider 0 < p = bδT c ≤ T and 0 < n = brT c ≤ T , where δ, r ∈ (0, 1] and p and n

vary with the sample size T accordingly. Define the partial sum Sn =
∑n

t=1 xt for some

discrete process xt, t = 1, . . . , T . Finally, let Λε,T ≡ {n ∈ N|bεT c+ 1 < n ≤ T − bεT c − 1}
and Λε ≡ {r|ε < r ≤ 1− ε}, where N denotes the natural numbers.

Assume for now that the underlying process being tested {xt} satisfies (2) with Ex1 = 0,

where its memory parameter d may or may not change somewhere in the observed sample.5

I will explicitly impose a further set of very mild assumptions under the null and alternative

hypotheses in the next section in order to obtain the null limiting distribution and consistency

of the proposed test statistic. The relevant null and alternative hypotheses for this test are

given by

H0 : d is constant for all t = 1, . . . , T, vs.

Ha : d = d1 for t = 1, . . . , Tb and d = d2 for t = Tb + 1, . . . , T, for some d1 6= d2,

where Tb is some integer in [1, T ]. Now let

RS(n) ≡
maxp∈Z∩[n−bεT c,n] Sp −minp∈Z∩[n−bεT c,n] Sp

maxp∈Z∩[n+1,n+bεT c+1] Sp −minp∈Z∩[n+1,n+bεT c+1] Sp

and

LRS(r) ≡
maxδ∈[r−ε,r] Bd(δ)−minδ∈[r−ε,r] Bd(δ)

maxδ∈[r,r+ε] Bd(δ)−minδ∈[r,r+ε] Bd(δ)
,

where Z denotes the set of integers.

To gain intuition about the test statistic below, note that if {xt}, satisfies (2) and H0,

the FCLT (3) and continuous mapping theorem (CMT) immediately give use the following

result:

RS(n) =
maxp∈[n−bεT c,n]

1
σT
Sp −minp∈[n−bεT c,n]

1
σT
Sp

maxp∈[n+1,n+bεT c+1]
1
σT
Sp −minp∈[n+1,n+bεT c+1]

1
σT
Sp
⇒ LRS(r).

And by another application of the CMT, we have

sup
n∈Λε,T

max{RS(n), RS(n)−1} ⇒ sup
r∈Λε

max{LRS(r), LRS(r)−1}.

5If one wishes to apply these arguments to a non-zero mean process, the true mean of the process must
be estimated and the function RS(n) in what follows must be slightly modified so that the partial sums
Sp are replaced by S∗p , defined above. In this case, the limiting null distribution will be the same with the
fractional Brownian bridge Bd(δ) − δBd(1) replacing the fractional Brownian motion Bd(δ). The test will
remain consistent.
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Hence, if d were known under H0, i.e., H0 : d0 = d for all t = 1, . . . , T , we would already

have a null limiting distribution. For a researcher willing to specify the value of the memory

parameter under the null hypothesis, the above provides a fully nonparametric test. The

critical values are easy to simulate for each value of d. Tests requiring the value of d under

the null hypothesis, alternative hypothesis or both are common in the literature on testing

for fractional integration (e.g., Mayoral, 2006). However, the case of more practical relavence

and more generality is when the researcher does not specify the values of d under H0 or Ha.

Similarly, the above test would be consistent. Suppose now that {xt}, satisfies (2) and

Ha, without loss of generality (WLOG) that d2 > d1 and Tb/T → τ ∈ (0, 1). That is, {xt; t =

1, . . . , Tb} satisfies (2) with d = d1, {xt; t = Tb + 1, . . . , T} satisfies (2) with d = d2 > d1

and the time of persistence change grows at the same rate as the sample size. By the facts

that Sl is uniformly Op(T
d1+ 1

2 ) for all l = 1, . . . , Tb and Sh is uniformly Op(T
d2+ 1

2 ) for all

h = Tb + 1, . . . , T , we have,

RS(Tb) ≡
maxp∈[Tb−bεT c,Tb] Sp −minp∈[Tb−bεT c,Tb] Sp

maxp∈[Tb+1,Tb+bεT c+1] Sp −minp∈[Tb+1,Tb+bεT c+1] Sp

=
Op(T

d1+ 1
2 )−Op(T

d1+ 1
2 )

Op(T
d2+ 1

2 )−Op(T
d2+ 1

2 )
=
Op(T

d1+ 1
2 )

Op(T
d2+ 1

2 )
= Op(T

d1−d2).

Hence, 0 ≤ max{RS(Tb), RS(Tb)
−1} = Op

(
T d2−d1

)
. If Tb ∈ Λε,T ,

sup
n∈Λε,T

max{RS(n), RS(n)−1} ≥ max{RS(Tb), RS(Tb)
−1} p−→∞,

since Tb/T → τ ∈ (0, 1).

3 The Test Statistic

If d were known under H0, we would have a consistent nonparametric test statistic, namely,

supn∈Λε,T
max{RS(n), RS(n)−1}. However, I make no assumptions on d under H0 and it

should effectively be regarded as a nuisance parameter in this setting. In order to construct

a test statistic whose null limiting distribution is free of this nuisance parameter, we must

obtain a consistent estimate of it. I make use of the semiparametric local Whittle’s (LW)

estimate of d, originally proposed by Künsch (1987) in the construction of the statistic for

a couple reasons: (i) it is robust to misspecification of model parameters that affect the

spectral density away from the zero frequency, giving the test a distinct advantage over

fully parametric forms; (ii) because it has been shown by Robinson (1995a) to be the most

efficient of such estimates. Nevertheless, one could use a different semiparametric estimate,
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such as the log-periodogram regression estimate proposed by Geweke and Porter-Hudak

(1983), although Theorem 1, given below, would not directly apply.

I briefly describe the construction of the LW estimate and refer interested readers to

Robinson (1995a) for details and asymptotic theory. The LW estimate is based directly on

the behavior of the spectral density of a long-memory process at frequency zero, given by

(1). First, define the discrete Fourier transform and periodogram of the process {xt} at

frequency λ as

w(λ) =
1

(2πT )1/2

T∑
t=1

xte
itλ and I(λ) = |w(λ)|2.

Since we are only concerned here with the spectral behavior of the process at the zero

frequency, the estimate will only involve the computation of I(λ) at frequencies λj = 2πj/T

for j = 1, . . . ,m, where m is typically small relative to the sample size T (to be made more

precise later). The estimate is based on the approximate Gaussian likelihood function given

by (see Künsch, 1987 for details)

Q(G, d) =
1

m

m∑
j=1

{
log
(
Gλ−2d

j

)
+

Ij

Gλ−2d
j

}
,

where Ij ≡ I(λj). Letting Θ = [∆1,∆2] with −1/2 < ∆1 < ∆2 < 1/2 define the compact

set of admissible estimates of the true memory parameter d0 joint minimization of Q(G, d)

in G and d leads to the following LW estimate of d0:

d̂ = argmind∈ΘR(d),

where R(·) is the concentrated likelihood function given by

R(d) = log Ĝ(d)− 2d
1

m

m∑
j=1

log λj with Ĝ(d) =
1

m

m∑
j=1

λ2d
j Ij.

In our case, we are only concerned with the stationary yet persistent region for the memory

parameter. So from here onward, regard Θ ≡ [0,∆), where ∆ < 1/2.

Before giving the expression for the test statistic, a very important function must first

be defined: let

f̃d(t, u) ≡ du−d
∫ t

u

sd−1(s− u)−dds−
(
t

u

)d
(t− u)−d . (4)

This function is involved in transforming fractional Brownian motion on the unit interval

into standard Brownian motion on the unit interval. Let the following partial sum of this
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function be denoted as follows:

F̃d(p) =

p∑
i=2

f̃d

(
p

T
,
i− 1

T

)
.

Also define the following averages of the time series being tested as

x̄−(n) =
1

n− 1

n∑
i=2

xi and x̄+(n) =
1

T − n

T∑
i=n+1

xi.

Define the range of a function g(·) over the compact set Γ as

RGx∈Γ {g(x)} = max
x∈Γ

g(x)−min
x∈Γ

g(x).

Now let

RRS(n, d̂) ≡
RGp∈Z∩[n−bεT c,n]

{∑p
i=2 f̃d̂

(
p
T
, i−1
T

)
xi − x̄−(n)F̃d̂(p)

}
RGp∈Z∩[n+1,n+bεT c+1]

{∑p
i=2 f̃d̂

(
p
T
, i−1
T

)
xi − x̄+(n)F̃d̂(p)

} .
The test statistic, given below, is a simple transformation of this random function. RRS(n, d̂)

is a ratio of ranges of weighted partial sums of the underlying time series. The extra terms

x̄−(n)F̃d̂(p) and x̄+(n)F̃d̂(p) are subtracted in order to correct for the effect of the mean

on the weighted sums in finite samples. This may be seen more clearly in the proof of

Theorem 3. These terms involve local, rather than full sample, averages of the process in

order to help bring the nominal size of the test closer to its asymptotic value. The use

of weighted partial sums, with weightings given by various values of f̃d̂, will allow the test

statistic to converge to a functional of standard, rather than fractional, Brownian motion.

This eliminates the problem of d being a nuisance parameter in the null limiting distribution.

Finally, we arrive at the test statistic for testing against a change in the memory parameter:

supn∈Λε,T
max{RRS(n, d̂), RRS(n, d̂)−1}. I coin this test the “Ratio-Range Test” (RRT) for

obvious reasons.

Again, I assume that the process being tested {xt} satisfies (2), where d does not change

in the observed sample if H0 is satisfied but changes if Ha is true. I impose one additional

weak assumption on the spectral density function of the process under the null. Let f(·)
denote the spectral density function of {xt}.

Assumption 1. For some γ > 0, f(λ) is differentiable for all λ ∈ (0, γ) and

d

dλ
log f(λ) = O

(
λ−1
)

as λ→ 0+.
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This assumption is identical to Assumption A2 of Robinson (1995a) and is used to obtain

consistency of d̂ under H0.

An assumption on the growth of the bandwidth parameter m used in the construction of

the LW estimate must also be imposed to obtain consistency of d̂.

Assumption 2. As T →∞,
1

m
+
m

T
→ 0.

This is the minimal assumption on m (A4 in Robinson, 1995a) that is required for consistency

since the number of periodogram ordinates used in the estimation of d must grow with the

sample while the estimates of the spectral density must remain local to the zero frequency.

Typical choices for m are in the range of T 1/2 to T 4/5.

The following theorem establishes the limiting distribution of the test statistic under the

null hypothesis.

Theorem 1. If {xt}, satisfies H0, (2) and Assumption 1 while Assumption 2 and d0 ∈ Θ

hold, then

sup
n∈Λε,T

max{RRS(n, d̂), RRS(n, d̂)−1} ⇒ sup
r∈Λε

max{LRRS(r), LRRS(r)−1},

where d0 is the true value of d under H0 and

LRRS(r) ≡
maxδ∈[r−ε,r] B(δ)−minδ∈[r−ε,r]B(δ)

maxδ∈[r,r+ε] B(δ)−minδ∈[r,r+ε] B(δ)
.

Note that the null limiting distribution is a simple function of Brownian motion, free of

nuisance parameters.

Now working under Ha, before establishing consistency of the RRT, I must modify As-

sumption 1 to suitably fit the framework of a break in the memory parameter. Now let

f1(·) and f2(·) denote the spectral density functions of the processes {xt, t = 1, . . . , Tb} and

{xt, t = Tb + 1, . . . , T}, respectively.

Assumption 1∗. For some γ > 0, f1(λ) and f2(λ) are differentiable for all λ ∈ (0, γ) and

for i = 1, 2,
d

dλ
log fi(λ) = O(λ−1) as λ→ 0+.

I must also make an assumption that is standard in the structural break literature regarding

the time of change in the memory parameter under the alternative hypothesis.
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Assumption 3. As T →∞,
Tb
T
→ τ ∈ (0, 1).

With these two new assumptions, I can now introduce an important result, the break

case counterpart to Robinson’s (1995a) consistency result. It will be crucial to establishing

consistency of the RRT.

Theorem 2. If {xt} satisfies Ha and Assumption 1*, where {xt, t = 1, . . . , Tb} satisfies (2)

with d = d1 while {xt, t = Tb + 1, . . . , T} satisfies (2) with d = d2 and Assumptions 2-3 hold,

then d̂
p−→ d1 if d1 > d2 and d1 ∈ Θ and d̂

p−→ d2 if d2 > d1 and d2 ∈ Θ.

Theorem 2 is quite an interesting result. It indicates that perhaps some of the estimates

of the memory parameter provided in the literature are actually estimates of the largest

value of the memory parameter for processes that change persistence in this manner. This

is interesting because it would lead one to believe that many processes are exhibiting higher

persistence, in terms of the memory parameter, than they actually are over the observed

sample. I must note, however, that unreported simulation evidence indicates that the con-

vergence to the higher of the two parameters is rather slow. Nonetheless, even in small

samples, simulations show that the average d̂ is closer to the larger of the two parameters.

I now present the theorem establishing consistency of the RRT.

Theorem 3. If {xt} satisfies Ha and Assumption 1*, where {xt, t = 1, . . . , Tb} satisfies (2)

with d = d1 while {xt, t = Tb + 1, . . . , T} satisfies (2) with d = d2 > d1 and Assumptions 2-3

hold, then supn∈Λε,T
max{RRS(n, d̂), RRS(n, d̂)−1} p−→∞ for Tb ∈ Λε,T .

Since in practice it is unknown whether or not d2 > d1 underHa, practical implementation

takes two steps. First, one must test against Ha for which d2 > d1 by constructing the RRT

statistic exactly as described previously. Second, one should reverse the order of the data in

the observed sample and perform the exact same test. This second step will test against the

alternative for which d1 > d2 and Theorem 3 will apply to this reversed data.

Please note that the proofs of the above two theorems can be straightforwardly extended

to include alternative hypotheses entailing multiple changes in the memory parameter d.

They are only omitted for brevity’s sake. The only requirement for such an extension to

hold is that the break dates grow at the same rate as the sample size T . Hence, d̂ is biased

toward the largest of memory parameters in the observed sample and the RRT is actually

consistent against any number of changes in persistence.
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I conjecture, without proof, that Theorem 2 also holds for other semiparametric estimates

of the persistence parameter, such as the log-periodogram regression estimate of Geweke and

Porter-Hudak (1983). This can be seen from the periodogram decomposition of Lemma A.1

in the appendix. Because Theorem 3 applies the result of Theorem 2, the RRT will likely

also be consistent when these alternative estimates are used in the construction of the test

statistic. One must make sure, however, to use a semiparametric estimate in order for the

test to remain robust to the misspecification discussed above. The practitioner should also

take note that in order for the RRT statistic to asymptotically detect a change in memory,

it is necessary for the break date to lie in the set Λε,T . Although, as we will see, a larger

a trimming ε helps control the size properties of the RRT in smaller samples, too large a

trimming may exclude potential changes from being detected.

4 Finite Sample Properties of the Test

Upon implementing the RRT, one will encounter the problem that the integral inside of

f̃d(t, u) has no analytical solution and the integrand exhibits a singularity at the lower

bound of the integral. This singularity makes standard numerical approximation of the

integral difficult. Nevertheless, the integral can be approximated up to arbitrary accuracy

via the use of the following application of integration by parts:∫ t

u

sd−1(s− u)−dds =
1

1− d
(t− u)1−dtd−1 +

∫ t

u

sd−2(s− u)1−dds

=
∞∑
i=1

1

i− d
(t− u)i−dtd−i.

Depending upon the values of t and u (which depend on the sample size), different trunca-

tions for the above infinite sum should be used to obtain accurate approximations. Large

truncations are required for accuracy when the value of u is very small but one may use

quite small truncations and obtain accurate approximations when u is not close to zero.

To assess the finite sample properties of the RRT, I conducted Monte Carlo simulations

for three different sample sizes T = 1, 000, 2, 000 and 4, 000 and three different values of the

trimming parameter ε = 0.2, 0.25 and 0.3. Note that the sample sizes analyzed range from

moderate to large. I analyze these sizes because (i) the RRT is semiparametric in nature,

requiring somewhat larger sample sizes and (ii) the vast majority of applications of the

RRT will use data recorded daily or more often as data exhibiting long-memory features are

typically recorded at higher frequencies. The DGPs used to assess size are ARFIMA(0, d0, 0)
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(or fractional white noise) processes. The DGPs used to assess power are ARFIMA(0, d, 0)

processes for which a change in d from d1 to d2 occurs at mid-sample Tb = T/2. The nominal

size and power values are recorded from 1, 000 replications, using a 5% critical value. All

size and power values are recorded for the tests against Ha for which d2 > d1 only. Although

the finite sample distribution of the RRT is quite simple to simulate, I have provided critical

values for various values of the trimming parameter in Table 1. These are based on 10, 000

replications.

Beginning with the relatively smaller sample size of 1, 000 in Table 2, note the large

liberal size distortions occurring at higher values of d0. On the other hand, note that for d0

below 0.25, the size of the test is close to its nominal value. These features are indicative of a

boundary issue in size. The closer the memory parameter is to the boundary of stationarity

0.5, the larger the size distortions. This problem is akin to boundary issues arising in unit root

testing when the sum of the autoregressive parameters of a process is local to unity. Notice

that we do not encounter this problem for d0 closer to zero because the ARFIMA(0, d0, 0)

process is stationary for all d0 ∈ (−1/2, 1/2). Some of these size distortions for the smaller

samples can be dealt with by using a large trimming. Moreover, the construction of the

test statistic requires an initial LW estimate of d. So the researcher will know how much of

an issue size distortions may be prior to computing the RRT statistic. For example, if d̂ is

around 0.15, there is little need for concern but if d̂ is around 0.45, the researcher should use

a large trimming and carefully interpret results. That is, for small samples and large values

of d̂, the researcher should use a large trimming and look for large values of the RRT before

drawing the conclusion that there is significant evidence for rejecting the null of no change.

As can be seen from Tables 3 and 4, the size distortions decrease monotonically as the

sample size increases. For sample sizes around 4, 000, size distortions are no longer much

of an issue unless the memory parameter is quite close to the boundary of nonstationarity.

But even for d0 = 0.45, in larger samples, size distortions become only a slight concern. I

only report higher values of d0 in Table 4 because, for all other values, the nominal sizes are

very close to their exact levels. A final feature to note concerning size is that as sample sizes

grow, the trimming parameter chosen has much less of an effect on size. However, as we will

see in the following, larger trimmings generally lead to higher power.

Tables 5 and 6 show that the RRT performs very well in detecting large breaks in the

memory parameter. Even for the smaller sample sizes, a change from 0 to 0.45 is detected

over 90% of the time for most trimmings recorded. Unreported results show that these large

breaks are detected nearly 100% of the time for sample sizes of 4, 000 or larger. As for

12



smaller breaks and the smallest sample size, Table 5 indicates that the RRT distinguishes a

break in the memory parameter from a small to moderate size about as well as a break from

a moderate to large size. Moreover, these smaller breaks are detected about 40% of the time

and depend little on the trimming parameter used, with a higher trimming giving higher

power. However, as the sample size increases, Tables 6 and 7 show that the RRT becomes

somewhat better at detecting smaller moderate value to large value breaks than small value

to moderate value breaks. Furthermore, the trimming parameter used begins to matter more

for power as the sample size grows. This provides an interesting dichotomy with the results

for size which indicate that the trimming parameter matters less as the sample size grows.

Hence, we do not have the typical size-power tradeoff but something similar.

Overall, since the trimming parameter does not have much of an effect on size for large

samples but has a somewhat significant effect on power, one may wish to experiment with

different trimmings for larger samples. Though a larger trimming generally gives greater

power, the researcher must note that Theorem 3 tells us that too large of a trimming will

prevent a break from being detected. That is, the RRT only diverges when Tb ∈ Λε,T .

5 Empirical Application of the Range-Ratio Test

I applied the RRT to an S&P 500 stock market volatility series composed of daily observations

from October 1, 1928 to March 23, 2004, comprising a total of 20,000 observations. The daily

volatility series was constructed in the standard way from daily returns. Let Pt denote the

price index at date t. Then the returns are constructed as rt = log (Pt) − log (Pt−1) and

the volatilities are taken here to be the squared returns r2
t . Again, I only tested against the

d2 > d1 alternative. Hence, also applying the test to the time-reversed data may strengthen

the evidence for the presence of memory changes in the data but will not weaken it.6

I obtained the LW estimate of the memory parameter as well as the value of the RRT

statistic for 20 non-overlapping, size T = 1, 000 subsamples of the data, each recorded for

two different values of the bandwidth parameter, m = T 1/2 and m = T 4/5, and the trimming

ε = 0.3. I set the trimming parameter to be large in order to weaken the potential for size

distortions mentioned in the previous section. I recorded the estimated values of d to assess

the relevance of potential size distortions at this small sample size. The estimates, statistics

and dates corresponding to the subsamples are recorded in Table 8 with an asterisk marking

6In finite samples, the RRT statistic achieves high values when d1 > d2 even for non-reversed data.
However, without reversing the data, the test is not consistent against Ha for which d1 > d2, but rather
converges to a limiting distribution with larger critical values.
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those values of the test statistic that reject the null at the 1% significance level. The first

thing to note is the very high frequency at which significant levels of the test statistic are

achieved, indicating that the memory parameter changes rather frequently. A few of these

high values may be due to size distortions. However, the four largest values of the RRT

statistic are achieved when size distortions should not play much of a role: from October 1,

1928 to February 15, 1932, d̂ takes values 0.34 and 0.19; from June 29, 1935 to October 26,

1938, d̂ takes values 0.29 and 0.21; from July 11, 1960 to June 30, 1964, d̂ takes values 0.32

and 0.21; from May 31, 1984 to May 13, 1988, d̂ takes values 0.03 and 0.17.

One possibly disconcerting feature of Table 8 is that the values of d̂ often differ between

the two frequencies they are recorded for. Perron and Qu (2008) and others have shown

this to be a feature of a short-memory process contaminated by level shifts. Although this

may provide some evidence that structural changes in levels may also be present, level shifts

cannot explain the whole picture. That is, level shifts cannot be the sole reason for the

RRT’s significant values. For example, from June 29, 1935 to October 26, 1938, the two

estimates of d̂ do not differ significantly, yet the values of the RRT statistic are very high.

The same goes for the periods January 15, 1949 to July 28, 1952 and July 29, 1952 to July

19, 1956. Change in the memory parameter appears to be a large piece of the puzzle.

Finally, I recorded the same values for two larger subsamples of 4,000 observations each. I

selected one of these two subsamples to contain the oil crisis of the early 1970’s (July 1, 1964

to June 16, 1980) and the other to contain the stock market crash of October 1987 (May 16,

1978 to March 19, 1994). I again used a trimming parameter of ε = 0.3 to increase power

as I was assured the dates most likely to exhibit structural change lay within the middle

40% of the sample. The results are recorded in Table 9, with interpretations analogous to

those of Table 8 but now with an asterisk if they are significant at the 5% level as size

distortions are much less of an issue at this sample size. Again, we see evidence of change

in the memory parameter. For the reasons previously discussed, neither size distortions nor

level shifts seem to provide a solid contending argument for the apparent change in memory

occurring between May 16, 1978 and March 9, 1994.

6 Extensions and Future Work

Although I have not yet conducted a thorough simulation study on the size properties of

the RRT under different null DGPs, initial evidence shows that an ARFIMA process under

which the autoregressive coefficients sum close to unity causes larger liberal size distortions

than the pure FWN processes explored in Section 4. This problem could be due to two
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things: (i) the well known fact that estimates based upon the sample periodogram, such

as the semiparametric estimates of d, have poor finite sample properties in the presence

of strong serial correlation; (ii) when the sum of the autoregressive coefficients is close to

one, the process nears the boundary of stationarity. For reason (ii), I suspect that such size

distortions will be more pronounced when d0 is close to 0.5. It remains to be shown if this is

the case and how severe a size problem this would entail. Qu (2008) has indicated that the

autoregressive and moving average parameters of estimated ARFIMA models are generally

small implying that these potential size distortions may not be much of an issue in practice.

If the size problem is unmanageable for the test in its current form, I would suggest a

filtering procedure akin to “pre-whitening” prior to application of the RRT statistic. More

specifically, let x̃t = xt − x̄, where x̄ is just the sample mean. Estimate an ARFIMA(p, d, 0)

“autoregression” of the form

x̃t =

p∑
j=1

âjx̃t−j + v̂t

and apply the RRT to the residuals {v̂t}.
Just as pre-whitening procedures do not themselves assume anything about the paramet-

ric structure of the underlying DGP, the above procedure does not assume that the DGP

follows an ARFIMA(p, d, 0). It is only meant to remove strong serial correlation that is

produced by short-term, rather than long-memory, dynamics. So the test will remain semi-

parametric after the above procedure is conducted and the procedure should remove a large

portion of size distortions induced by short-term dynamics. Hence, an exploration of the

size (and power) properties of the RRT with and without involving such a procedure is of

interest if one believes that some types of economic data may both have long-memory and

autoregressive coefficients that sum close to unity. For example, Breidt et al. (1998) estimate

a FISV model that would exhibit such behavior if correctly specified. Nevertheless, most

long-memory parametric approximations do not indicate such behavior.

Other extensions of this work include different test statistics based upon ratios of func-

tions of partial sums. For example, one may take inspiration from the KPSS or the V/S

tests mentioned in Section 2. It may also be possible to form a test statistic that exploits

the frequency domain properties of a stationary process that changes persistence given in

Lemma A.1 of the appendix. It would also be interesting to explore estimation extensions

of the RRT statistic. The quantity

argsupn∈Λε,T
max

{
RRS

(
n, d̂
)
, RRS

(
n, d̂
)−1
}
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likely yields a consistent estimate of the break date in the single break case (when Tb ∈ Λε,T

and d2 > d1) while multiple breaks may be estimated by maximizing the RRT statistic over

various permissible grids in the time dimension. The limiting properties of such estimates

would be quite useful for inference and forecasting.
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Appendix 1: Technical Derivations

Proof of Theorem 1 : First note that if xt satisfies H0 and (2) and d0 ∈ [0,∆), then
Assumptions A1 and A3 of Robinson (1995a) are satisfied. With Assumptions 1 and 2, we

can immediately apply the result of Theorem 1 in Robinson (1995a): d̂
p−→ d0. Second,

working with the weighted partial sum
∑p

i=2 f̃d̂(
p
T
, i−1
T

)xi, let µx = Ex1 and observe that, by

the CMT, d̂
p−→ d0 implies

1

T

bTδc∑
i=2

f̃d̂

(
bTδc
T

,
i− 1

T

)
→
∫ δ

0

f̃d0(δ, u)du (A.1)

which is finite since f̃d(δ, ·) is integrable over (0, δ) because it is integrable with respect to
(fractional) Brownian motion, as established by Pipiras and Taqqu (2002). This integrability
holds for all values of δ between zero and one. Hence, for all δ ∈ [0, 1],

1

TσT

p∑
i=2

f̃d̂

(
p

T
,
i− 1

T

)
xi =

1

T

bTδc∑
i=2

f̃d̂

(
bδT c
T

,
i− 1

T

)[
1

σT
Si −

1

σT
Si−1

]

+
µx
σT

1

T

bTδc∑
i=2

f̃d̂

(
bTδc
T

,
i− 1

T

)
⇒
∫ δ

0

f̃d0(δ, u)dBd0(u)
d
= B(δ),

where the weak convergence in distribution occurs by (3) under (2) and H0, the CMT, the

properties of stochastic integrals and the fact that d̂
p−→ d0. The equality in distribution

was established by Pipiras and Taqqu (2002) (their deconvolution formula for fractional
Brownian motion defined over an interval). Third, x̄−(n) = 1

bTrcSbTrc + µx = Op(1) for all n

so that for all relevant p and n,

1

TσT
x̄−(n)F̃d̂(p) =

1

σT
Op(1) = op(1),

using (A.1). The exact same result holds for the quantity 1
TσT

x̄+(n)F̃d̂(p). Finally, note that

RRS(n, d̂) ≡
RGp∈Z∩[n−bεT c,n]

{
1

TσT

∑p
i=2 f̃d̂

(
p
T
, i−1
T

)
xi − 1

TσT
x̄−(n)F̃d̂(p)

}
RGp∈Z∩[n+1,n+bεT c+1]

{
1

TσT

∑p
i=2 f̃d̂

(
p
T
, i−1
T

)
xi − 1

TσT
x̄+(n)F̃d̂(p)

}
so that another application of the CMT establishes the theorem’s claim. �

Before proceeding to the proof of Theorem 2, we must first state and prove a lemma which
may be of interest in its own right. But before introducing this lemma, we lay out a condition
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necessary for it to hold. This condition is merely the break case analog to Assumption A1
of Robinson (1995a), imposed to establish consistency of the LW estimator.

Condition 1. As λ→ 0+,

f1(λ) ∼ G1λ
−2d1 and f2(λ) ∼ G2λ

−2d2 ,

where G1, G2 ∈ (0,∞) and 0 ≤ d1, d2 < ∆ for some ∆ ∈ (0, 1/2).

Lemma A.1. Under Assumptions 1*-3 and Condition 1, for any j = 1, . . . ,m as T →∞,

E
I(λj)

G1λ
−2d1
j

= τ

[
1 +O

(
log j

j

)]
if d1 > d2

and

E
I(λj)

G2λ
−2d2
j

= (1− τ)

[
1 +O

(
log j

j

)]
if d2 > d1.

Proof of Lemma A.1 : Since exactly analogous results apply to either case, we only provide
the proof for d2 > d1. Let wt = xt, for t = 1, . . . , Tb and zt = xt+Tb

, for t = 1, . . . , T − Tb and
consider the following decomposition of the periodogram of xt:

I(λj) =
1

2πT

∣∣∣∣∣
Tb∑
t=1

wt exp(iλjt) +

T−Tb∑
t=1

zt exp(iλj(t+ Tb))

∣∣∣∣∣
2

=
1

2πT

∣∣∣∣∣
Tb∑
t=1

wt exp(iλjt)

∣∣∣∣∣
2

+
1

2πT

∣∣∣∣∣
T−Tb∑
t=1

zt exp(iλj(t+ Tb))

∣∣∣∣∣
2

+
1

πT

∣∣∣∣∣
Tb∑
t=1

wt exp(iλjt)

∣∣∣∣∣
∣∣∣∣∣
T−Tb∑
t=1

zt exp(iλj(t+ Tb))

∣∣∣∣∣
=
Tb
T
Iw,Tb

(λj) +
1

2πT
|exp(iλjTb)|2

∣∣∣∣∣
T−Tb∑
t=1

zt exp(iλjt)

∣∣∣∣∣
2

+
1

πT
| exp(iλjTb)|

∣∣∣∣∣
Tb∑
t=1

wt exp(iλjt)

∣∣∣∣∣
∣∣∣∣∣
T−Tb∑
t=1

zt exp(iλjt)

∣∣∣∣∣
=
Tb
T
Iw,Tb

(λj) +
T − Tb
T

Iz,T−Tb
(λj)

+
2
√
Tb(T − Tb)
T

∣∣∣∣∣ 1√
2πTb

Tb∑
t=1

wt exp(iλjt)

∣∣∣∣∣
∣∣∣∣∣ 1√

2π(T − Tb)

T−Tb∑
t=1

zt exp(iλjt)

∣∣∣∣∣ , (A.2)

where Iw,Tb
(λ) ≡ 1

2πTb
|
∑Tb

t=1 wt exp(iλt)|2 and Iz,T−Tb
(λ) ≡ 1

2π(T−Tb)
|
∑T−Tb

t=1 zt exp(iλt)|2.
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Now, by Assumptions 1* and 2, Condition 1 and Theorem 2 of Robinson (1995b),

E
Iw,Tb

(λj)

G1λ
−2d1
j

= 1 +O

(
log j

j

)
and (A.3)

E
Iz,T−Tb

(λj)

G2λ
−2d2
j

= 1 +O

(
log j

j

)
(A.4)

uniformly in j = 1, . . . ,m as T →∞. As for the final contribution to (A.2),

1
√
G1G2λ

−d1−d2
j

E

∣∣∣∣∣ 1√
2πTb

Tb∑
t=1

wt exp(iλjt)

∣∣∣∣∣
∣∣∣∣∣ 1√

2π(T − Tb)

T−Tb∑
t=1

zt exp(iλjt)

∣∣∣∣∣
≤
√

EIw,Tb

G1λ
−2d1
j

EIz,T−Tb

G2λ
−2d2
j

= 1 +O

(
log j

j

)
, (A.5)

uniformly in j = 1, . . . ,m, where the inequality follows from the Cauchy-Schwartz inequality
and the equality results from (A.3) and (A.4). Along with Assumption 3, (A.2)-(A.5) imply
the lemma’s result since d2 > d1. �

We now have the necessary tools to provide the proof of Theorem 2 which relies heavily
on results derived by Robinson (1995a).

Proof of Theorem 2 : Again, without loss of generality, we only give the proof for when
d2 > d1. The conditions required for Lemma 1 to hold are weaker than those imposed
by Theorem 2. In fact, if {xt, t = 1, . . . , T} satisfies Ha where {xt, t = 1, . . . , Tb} satisfies
(2) with d = d1 while {xt, t = Tb + 1, . . . , T} satisfies (2) with d = d2, Condition 1 holds.
This also means Assumption A3 of Robinson (1995a) is satisfied and we can write a Wold
decomposition of {xt, t = 1, . . . , T} as follows:

xt − Ex1 =
∞∑
j=0

ajεt−j for t = 1, . . . , Tb and xt − Ex1 =
∞∑
j=0

bjεt−j for t = Tb + 1, . . . , T.

Robinson (1995a) has shown that in this context, for which 0 < d2 < ∆ < 1/2, for any
α ∈ (0, 1/2)

P
(∣∣∣d̂− d2

∣∣∣ ≥ α
)
≤ P

(
sup

Θ
|T (d)| ≥ 1

2
α2

)
,

where

T (d) = log

{
Ĝ(d2)

G2

}
− log

{
Ĝ(d)

G(d)

}
− log

{
2(d− d2) + 1

m

m∑
j=1

(
j

m

)2(d−d2)
}

+ 2(d− d2)

{
1

m

m∑
j=1

log j − (logm− 1)

}
and

G(d) = G2
1

m

m∑
j=1

λ
2(d−d2)
j .
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Hence, the proof reduces to showing that supΘ T (d)
p−→ 0. Moreover, Robinson (1995a) has

also established that both

sup
Θ

∣∣∣∣∣log

{
2(d− d2) + 1

m

m∑
j=1

(
j

m

)2(d−d2)
}∣∣∣∣∣

and

sup
Θ

∣∣∣∣∣2(d− d2)

{
1

m

m∑
j=1

log j − (logm− 1)

}∣∣∣∣∣
are o(1), so that the proof is complete if

sup
Θ

∣∣∣∣∣log

{
Ĝ(d2)

G2

}
− log

{
Ĝ(d)

G(d)

}∣∣∣∣∣ (A.6)

is op(1).
To this end, note that∣∣∣∣∣Ĝ(d2)

G2

+ τ2π
1

m

m∑
j=1

Iεj − 1

∣∣∣∣∣ =

∣∣∣∣∣ 1

m

m∑
j=1

(
Ij
gj

+ τ2πIεj − 1

)∣∣∣∣∣ , (A.7)

where gj = G2λ
−2d2
j , Iεj = |wε(λj)|2 and wε(λ) = (2πT )−1/2

∑T
t=1 εte

itλ. Now, using a variant
of Robinson’s (1995a) decomposition,

Ij
gj

+ τ2πIεj − 1 =

(
1− gj

fj

)
Ij
gj

+
1

fj
(Ij − (1− τ)|βj|2Iεj) + (2πIεj − 1), (A.8)

where fj = f2(λj) and βj =
∑∞

l=0 ble
ilλj . In light of Lemma 1, Robinson’s (1995a) results

immediately imply ∣∣∣∣∣ 1

m

m∑
j=1

(
1− gj

fj

)
Ij
gj

∣∣∣∣∣ = op(1) (A.9)

and ∣∣∣∣∣ 1

m

m∑
j=1

(2πIεj − 1)

∣∣∣∣∣ = op(1) (A.10)

since εt ∼ i.i.d.(0, σ2
ε). Turning to the other relevant quantity of the decomposition, Robinson

(1995a) establishes

E|Ij − (1− τ)|βj|2Iεj|

≤
(
EIj −

√
1− τβjEwε(λj)w̄(λj)−

√
1− τ β̄jEw̄ε(λj)w(λj) + (1− τ)|βj|2EIεj

)1/2

×
(
EIj +

√
1− τβjEwε(λj)w̄(λj) +

√
1− τ β̄jEw̄ε(λj)w(λj) + (1− τ)|βj|2EIεj

)1/2

(A.11)
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via use of the Cauchy-Schwartz inequality. Lemma 1 and Theorem 2 of Robinson (1995b)
imply that

EIj = fj

[
(1− τ) +O

(
log j

j

)]
,

Ew(λj)w̄ε(λj) =
βj
2π

√
1− τ +O

(
log j

j
λ−d2j

)
and

EIεj =
1

2π
+O

(
log j

j

)
uniformly in j = 1, . . . ,m. Hence, (A.11) is O(fj(log j/j)1/2) so that for some constant C,

E

∣∣∣∣∣ 1

m

m∑
j=1

1

fj

(
Ij − (1− τ)|βj|2Iεj

)∣∣∣∣∣ ≤ C

m

m∑
j=1

(
log j

j

)1/2

≤ C

m1/4

m∑
j=1

(log j)1/2

j5/4
= o(1). (A.12)

With (A.9) and (A.10), (A.12) implies that (A.7) is op(1).
Applying similar techniques, let

Ĥ(d) =
2π
∑m

j=1

(
j
m

)2(d−d2)
Iεj∑m

j=1

(
j
m

)2(d−d2)

and note that
Ĝ(d)

G(d)
+ τĤ(d)− 1 =

A(d)

B(d)
, (A.13)

where

A(d) =
2(d− d2) + 1

m

m∑
j=1

(
j

m

)2(d−d2)(
Ij
gj

+ τ2πIεj − 1

)
and

B(d) =
2(d− d2) + 1

m

m∑
j=1

(
j

m

)2(d−d2)

.

Robinson (1995a) has shown

inf
Θ
B(d) ≥ 1

2
(A.14)

and using his same arguments, the supremum of |A(d)| on Θ can be shown to be bounded
by

6
m−1∑
r=1

(
r

m
)−2d2+1 1

r2

∣∣∣∣∣
r∑
j=1

(
Ij
gj

+ τ2πIεj − 1

)∣∣∣∣∣+
3

m

∣∣∣∣∣
m∑
j=1

(
Ij
gj

+ τ2πIεj − 1

)∣∣∣∣∣ , (A.15)
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so we can again apply the decomposition (A.8). Given Assumption 1 and that (A.11) is
O(fj(log j/j)1/2), direct appeal to Robinson’s (1995a) arguments establish the first term of
(A.15) is op(1). Further, the second term of (A.15) is also op(1) because (A.7) is.

Since (A.7) and (A.15) are both op(1), with (A.14), we have established∣∣∣∣∣Ĝ(d2)

G2

+ τ2π
1

m

m∑
j=1

Iεj − 1

∣∣∣∣∣ p−→ 0 (A.16)

and

sup
Θ

∣∣∣∣∣Ĝ(d)

G(d)
+ τĤ(d)− 1

∣∣∣∣∣ p−→ 0. (A.17)

Now, compare the structure of |Ĥ(d)−1| to A(d)
B(d)

in (A.13) to note that, via the decomposition

(A.8), |Ĥ(d)−1| is merely one of the terms that bounds the supremum of |A(d)| on Θ. Again,

Robinson (1995a) has shown this term to be op(1) so that Ĥ(d)
p−→ 1 for all d ∈ Θ̄, the

closure of the set Θ. Hence, (A.17) implies

Ĝ(d)

G(d)

p−→ 1− τ (A.18)

for all d ∈ Θ̄. Similarly, (A.10) establishes 2π 1
m

∑m
j=1 Iεj

p−→ 1 so that (A.16) implies

Ĝ(d2)

G2

p−→ 1− τ. (A.19)

With the aid of Slutsky’s Theorem, (A.18) and (A.19) imply∣∣∣∣∣log

{
Ĝ(d2)

G2

}
− log

{
Ĝ(d)

G(d)

}∣∣∣∣∣ p−→ 0

for all d ∈ Θ̄ which finally yields supΘ T (d)
p−→ 0 by (A.6), completing the proof. �

Proof of Theorem 3 : To establish this result, one needs to find the orders of the partial
sums in RRS(n, d̂) to find the order of supn∈Λε,T

max{RRS(n, d̂), RRS(n, d̂)−1}. In this vain,

I examine the behavior of the function f̃d̂(δ, ·). As is apparent from its functional form (4),

for fixed d ∈ (0, 1) and δ ∈ (0, 1], f̃d
(
δ, i−1

T

)
exhibits asymptotes at i−1

T
= 0, where it tends

toward ∞, and i−1
T

= δ, where it tends toward −∞. Working with a term in the function

f̃d(δ, ·), assume for now that d ∈ (0, 1) is fixed. Then for all δ ∈ (0, 1] and u ∈ (0, δ), we have

0 ≤
∫ δ

u

sd̂−1(s− u)−dds ≤
∫ δ

u

ud−1(s− u)−dds = ud−1

∫ δ

u

(s− u)−dds, (A.20)

where the second inequality follows from the assumption d ∈ (0, 1).
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Examining the asymptote of f̃d(δ, ·) at zero,

lim
u→0+

{
f̃d(δ, u)u

}
= lim

u→0+

{
du−d

∫ δ
u
sd−1(s− u)−d̂ds−

(
δ
u

)d
(δ − u)−d

u−dud−1

}

= lim
u→0+

{
d
∫ δ
u
sd−1(s− u)−dds− δd(δ − u)−d

ud−1

}

= lim
u→0+

{
d
∫ δ
u
sd−1(s− u)−dds

ud−1

}

≤ lim
u→0+

{
dud−1

∫ δ
u

(s− u)−dds

ud−1

}

= d

∫ δ

0

s−dds =
dδ1−d

1− d
, (A.21)

where the third equality uses limu→0+

{
δd(δ−u)−d

ud−1

}
= 0 and the inequality follows from (A.20).

Similarly, examining the asymptote of f̃d(δ, ·) at δ, now note that

ud−1

∫ δ

u

(s− u)−dds =
ud−1

1− d
(δ − u)1−d, (A.22)

so we have

0 ≤ lim
u→δ−

{
du−d

∫ δ

u

sd−1(s− u)−dds

}
≤ lim

u→δ−

{
du−d

[
ud−1

∫ δ

u

(s− u)−dds

]}
= lim

u→δ−

{
dud−2(δ − u)1−d

1− d

}
= 0, (A.23)

where the second inequality again follows from (A.20) and the first equality is a result of
(A.22). Then,

lim
u→δ−

{
f̃d(δ, u)(δ − u)d

}
= lim

u→δ−

{
du−d

∫ δ
u
sd−1(s− u)−dds−

(
δ
u

)d
(δ − u)−d

(δ − u)−d

}

= lim
u→δ−

{
−
(
δ

u

)d}
= −1. (A.24)

where the second equality holds by (A.23). In the case that d = 0, f̃d(δ, u) = −1 for all
δ ∈ (0, 1] and u ∈ (0, δ), so that

lim
u→0+

{
f̃d(δ, u)

}
= lim

u→δ−

{
f̃d(δ, u)

}
= −1 (A.25)
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for all δ ∈ (0, 1].
Results (A.21) and (A.24) rely on the assumption that d ∈ (0, 1), while (A.25) holds for

d = 0. A subset of these values contain the relevant cases for the test statistic. In fact,
d ∈ [0, 1

2
) are the relevant values here because, by the assumption d2 > d1 and Theorem 2, d̂

converges in probability to d2 ∈ [0, 1
2
) and d̂ is restricted to be in the set Θ = [0,∆) ⊂ [0, 1/2].

In the following arguments, results (A.21) and (A.24) will be applied to examining the

limiting behavior of f̃d̂
(
p
T
, i−1
T

)
as T −→∞.

Given that d̂
p−→ d2 if d2 ∈ Θ7, for any d̂ ∈ Θ and δ ∈ (0, 1],

plimT→∞

{
T−1 max

i−1
T
∈[ 1

T
, p
T
− 1

T ]
f̃d̂

(
p

T
,
i− 1

T

)}
= plimT→∞

{
T−1f̃d̂

(
δ,

1

T

)}
= lim

T→∞

{
T−1f̃d2

(
δ,

1

T

)}
= lim

u→0+

{
f̃d2(δ, u)u

}
≤ d2δ

1−d2

1− d2

(A.26)

by the CMT and (A.21), implying that

max
i−1
T
∈[ 1

T
, p
T
− 1

T ]
f̃d̂

(
p

T
,
i− 1

T

)
= Op(T ).

Similarly,

plimT→∞

{
T−d2 min

i−1
T
∈[ 1

T
, p
T
− 1

T ]
f̃d̂

(
p

T
,
i− 1

T

)}
= plimT→∞

{
T−d2 f̃d̂

(
δ, δ − 1

T

)}
= lim

T→∞

{
T−d2 f̃d2

(
δ, δ − 1

T

)}
= lim

u→δ−

{
f̃d2(δ, u)(δ − u)d2

}
= −1 (A.27)

by the CMT and (A.24), implying that

min
i−1
T
∈[ 1

T
, p
T
− 1

T ]
f̃d̂

(
p

T
,
i− 1

T

)
= Op

(
T d2
)
.

Thus one can conclude

f̃d̂

(
p

T
,
i− 1

T

)
= Op(T ) (A.28)

over the ranges of i−1
T

considered in the test statistic.

Before proceeding to establish the orders of the weighted partial sums
∑p

i=2 f̃d̂
(
p
T
, i−1
T

)
xi,

it should be noted that

sup
d2∈[0, 12),δ∈(0,1]

{
d2δ

1−d2

1− d2

}
= sup

d2∈[0, 12)

{
d2

1− d2

}
= 1.

7The case for which d2 /∈ Θ does not pose a problem since the LW estimate will converge to ∆, the upper
bound of Θ. In this case, just replace d2 with ∆.
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Hence, by (A.26), (A.27) and (A.28),

1

T

p∑
i=2

f̃d̂

(
p

T
,
i− 1

T

)
xi =

p∑
i=2

cixi, (A.29)

where Pr(|ci| ≤ 1)→ 1 as T →∞ for all i = 2, . . . , p, because d̂
p−→ d2.∑p

i=2 cixi∑p
i=2 xi

= Op(1). (A.30)

Putting (A.29) and (A.30) together, we have

1

T

p∑
i=2

f̃d̂

(
p

T
,
i− 1

T

)
xi =

∑p
i=2 cixi∑p
i=2 xi

p∑
i=2

xi = Op(1)

p∑
i=2

xi

so that by the FCLT (3),

1

T

p∑
i=2

f̃d̂

(
p

T
,
i− 1

T

)
xi = Op

(
T d1+ 1

2

)
for all p ≤ Tb and

1

T

p∑
i=2

f̃d̂

(
p

T
,
i− 1

T

)
xi = Op

(
T d2+ 1

2

)
for all p > Tb (A.31)

uniformly in p.

As shown in the proof of Theorem 1, 1
T

∑p
i=2 f̃d̂

(
p
T
, i−1
T

)
, x̄−(Tb) and x̄+(Tb) are Op(1) for

all relevant values of p. Hence with (A.31), we have

RRS
(
Tb, d̂

)
≡

RGp∈Z∩[Tb−bεT c,Tb]

{
1
T

∑p
i=2 f̃d̂

(
p
T
, i−1
T

)
xi − 1

T
x̄−(Tb)F̃d̂(p)

}
RGp∈Z∩[Tb+1,Tb+bεT c+1]

{
1
T

∑p
i=2 f̃d̂

(
p
T
, i−1
T

)
xi − 1

T
x̄+(Tb)F̃d̂(p)

}
=

RGp∈Z∩[Tb−bεT c,Tb]

{
Op

(
T d1+ 1

2

)
+Op(1)

}
RGp∈Z∩[Tb+1,Tb+bεT c+1]

{
Op

(
T d2+ 1

2

)
+Op(1)

}
=
Op

(
T d1+ 1

2

)
Op

(
T d2+ 1

2

) = Op

(
T d1−d2

)
,

providing us with the final result:

sup
n∈Λε,T

max

{
RRS

(
n, d̂
)
, RRS

(
n, d̂
)−1
}
≥ max

{
RRS

(
Tb, d̂

)
, RRS

(
Tb, d̂

)−1
}

p−→∞

when Tb ∈ Λε,T . �
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Table 1. Critical Values of the RRT Statistic

α = 0.01 α = 0.05 α = 0.1

ε = 0.05 4.6001 3.9264 3.6088

ε = 0.1 4.2094 3.5164 3.2198

ε = 0.15 3.9473 3.2714 2.9869

ε = 0.2 3.7435 3.0866 2.7896

ε = 0.25 3.5228 2.9073 2.6217

ε = 0.3 3.4299 2.7928 2.4836

Table 2. Size of the RRT when T = 1,000 (nominal size is 5%)

d0 = 0 d0 = 0.15 d0 = 0.25 d0 = 0.35 d0 = 0.45

ε = 0.2 6.3% 9.4% 10.9% 13.3% 20.6%

ε = 0.25 6.1% 8.0% 9.4% 13.4% 17.7%

ε = 0.3 4.6% 5.5% 7.1% 10.4% 14.5%

Table 3. Size of the RRT when T = 2,000 (nominal size is 5%)

d0 = 0 d0 = 0.25 d0 = 0.35 d0 = 0.45

ε = 0.2 5.4% 8.2% 10.2% 14.0%

ε = 0.25 5.5% 4.2% 9.1% 14.1%

ε = 0.3 3.7% 4.7% 7.0% 15.0%

Table 4. Size of the RRT when T = 4,000 (nominal size is 5%)

d0 = 0.35 d0 = 0.45

ε = 0.2 7.5% 11.1%

ε = 0.25 7.5% 11.8%

ε = 0.3 4.8% 9.7%
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Table 5. Power of the RRT when T = 1,000 (nominal size is 5%)

(d1,d2) = (0,0.25) (0.25,0.45) (0,0.45)

ε = 0.2 36.2% 37.7% 84.6%

ε = 0.25 41.9% 40.8% 90.1%

ε = 0.3 44.4% 43.2% 93.5%

Table 6. Power of the RRT when T = 2,000 (nominal size is 5%)

(d1,d2) = (0,0.25) (0.25,0.45) (0,0.45)

ε = 0.2 33.1% 38.0% 93.4%

ε = 0.25 37.2% 47.1% 96.5%

ε = 0.3 44.3% 49.8% 98.2%

Table 7. Power of the RRT when T = 4,000 (nominal size is 5%)

(d1,d2) = (0,0.25) (0.25,0.45)

ε = 0.2 41.9% 50.2%

ε = 0.25 51.7% 53.5%

ε = 0.3 56.5% 59.4%
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Table 8. Values of d̂ and the RRT Statistic for S&P 500 Volatility for T = 1,000

Dates RRT(T1/2) d̂(T1/2) RRT(T4/5) d̂(T4/5)

10/1/1928-2/15/1932 12.8200* 0.34 9.7554* 0.19

2/16/1932-6/28/1935 6.5935* 0.03 3.5549* 0.11

6/29/1935-10/26/1938 9.0647* 0.29 8.9498* 0.21

10/27/1938-2/24/1942 2.8416 0.21 3.1623 0.17

2/25/1942-6/23/1945 2.8489 0.08 2.7992 0

6/25/1945-1/14/1949 3.0083 0.14 2.9412 0.22

1/15/1949-7/28/1952 4.0444* 0.22 4.2651* 0.18

7/29/1952-7/19/1956 5.8307* 0.00 5.7454* 0.04

7/20/1956-7/8/1960 4.5257* 0.49 4.1343* 0.18

7/11/1960-6/30/1964 7.9113* 0.32 8.0254* 0.21

7/1/1964-6/24/1968 2.8664 0.28 2.8886 0.27

6/25/1968-7/13/1972 3.5897* 0.35 3.6939* 0.27

7/14/1972-6/30/1976 3.7664* 0.49 4.2533* 0.15

7/1/1976-6/16/1980 4.5176* 0.41 3.1935 0.08

6/17/1980-5/30/1984 3.4458* 0.31 4.2587* 0.13

5/31/1984-5/13/1988 18.191* 0.03 19.676* 0.17

5/16/1988-4/28/1992 3.0299 0.09 3.7956* 0.04

4/29/1992-4/11/1996 1.6123 0.28 1.8207 0.05

4/12/1996-3/28/2000 3.5304* 0.24 3.5738* 0.12

3/29/00-3/23/04 2.4241 0.36 2.6462 0.27

Table 9. Values of d̂ and the RRT Statistic for S&P 500 Volatility for T = 4,000

Dates RRT(T1/2) d̂(T1/2) RRT(T4/5) d̂(T4/5)

7/1/1964-6/16/1980 3.4297* 0.46 4.2660* 0.26

5/16/1978-3/9/1994 5.7243* 0.13 6.3188* 0.19
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