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Abstract

We consider large factor models where factorsíexplanatory power does not

strongly dominate the explanatory power of the idiosyncratic terms in Önite

samples, which is the situation often observed in the empirical applications.

To study the principal components (PC) estimator of such a weak factors, we

introduce a Pitman-drift-like asymptotic device, which we call weak factors

asymptotics. We Önd the probability limits of the PC estimator under weak

factors asymptotics when the idiosyncratic terms can be both cross-sectionally

and temporally correlated. We show that the probability limits may be dras-

tically di¤erent from the true factors and factor loadings even for factors with

substantial explanatory power. For a special case of no cross-sectional and

temporal correlation of the idiosyncratic terms, we establish the second order

weak factors asymptotics of the PC estimator. The estimator is asymptotically

normal with the covariance matrix depending on the strength of the factors and

on the ratio of the cross-sectional and the temporal dimensions of the data.
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1 Introduction

Approximate factor models have recently attracted an increasing amount of attention

from researchers in macroeconomics and Önance (see Breitung and Eickmeier (2005)

for a survey of numerous applications). The most popular technique for estimating

factors in such models is the principal components (PC) analysis. Its consistency and

asymptotic normality have been shown by Bai (2003). Unfortunately, as Monte Carlo

experiments show (see, for example, Boivin and Ng (2006), Uhlig (2008), or Chapter

8 of Bai and Ng (2008)), the Önite sample performance of the PC estimator is poor

when the explanatory power of factors does not strongly dominate the explanatory

power of the idiosyncratic terms. Such a situation is often encountered in practice.

Its hallmark is the absence of clearly visible separation of the sample covariance

eigenvalues into a group of large eigenvalues representing systematic variation and a

group of small eigenvalues representing idiosyncratic variation (see Heaton and Solo

(2006) for a related discussion).

This paper shows how and why the principal component estimates for large factor

models might not be appropriate. We develop asymptotic approximation to the Önite

sample biases due to the relatively weak explanatory power of factors. We explicitly

link these biases to the covariance structure of the idiosyncratic terms and show

that they can be extremely large. For a 1-factor model calibrated to the European

macroeconomic data used in Boivin et al. (2008), we Önd that the PC estimate of

the factor is orthogonal to the true factor even if the latter explains as much as about

20% of the dataís variance. To make things worse, the orthogonal estimate would

be taken seriously by an econometrician because it (spuriously) explains 20% of the

variation in the data! Our Monte Carlo experiments conÖrm good approximation

quality of our asymptotics in Önite samples with relatively weak factors.

Let us describe our main results in more detail. We consider approximate factor

models:

Xit = L0iFt + eit with i 2 N and t 2 N; (1)

where Ft and Li are k � 1 vectors of factors and factor loadings, respectively, and eit

are possibly cross-sectionally and temporally correlated idiosyncratic components of

Xit. The asymptotic identiÖcation is achieved by the following standard requirements.

First, the factors are normalized so that E
�
1
T

PT
t=1 FtF

0
t

�
= Ik: Second, the
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idiosyncratic terms are only weakly correlated so that:

lim sup
n;T!1

max eval E

�
1

T
ee0
�

< 1; (2)

where max eval (A) denotes the maximal eigenvalue of matrix A and e denotes the

n � T matrix with i; t-th elements eit. Finally, the factors are pervasive in the sense

that their cumulative loadings on n cross-sectional units rise proportionally to n :

nX
i=1

LiL
0
i

n
! S > 0: (3)

Let X be an observed n � T matrix with i; t-th elements Xit, and let F and L

be unobserved T � k and n � k matrices with j-th rows F 0
j and L0j; respectively.

Then we have: X = LF 0 + e: The PC estimator of F; F̂ ; is deÖned as
p

T times the

matrix of the principal k eigenvectors of a sample-covariance-type matrix X 0X=T;

and the PC estimator of L; L̂; is deÖned as XF̂=T: We would like to study the

properties of the PC estimators in the situation when the factorsíÖnite sample ex-

planatory power, as measured by
Pn

i=1 LiL
0
i; is weak, that is, only moderately larger

than max eval E
�
1
T

ee0
�

:

Note that if we Öx model (1) and let n and T go to inÖnity, assumptions (2) and (3)

would imply that, asymptotically,
Pn

i=1 LiL
0
i is inÖnitely larger than max eval E

�
1
T

ee0
�

:

Hence, such an asymptotics would not provide a useful approximation to the Önite

samples with relatively weak factors. We will therefore consider a di¤erent asymptot-

ics, where models (1) are drifting as n and T tend to inÖnity so that the Önite sample

explanatory power of factors remains bounded. Formally, we will consider a sequence

of models (1) indexed by the cross-sectional dimension n; so that

nX
i=1

L
(n)
i L

(n)0
i � D ! 0 (4)

as n and T (n) go to inÖnity proportionately, where D = diag (d1trice(ee)]TJ-e�(D)]TJ/F14 11.955 TF53 11.955 Tf 42.1(e)90(n)]TJ/F555 Tf 1) (3)



example, Davidson and MacKinnon (2004)), used in the asymptotic power compar-

isons of consistent tests. Since for any Öxed alternative, the asymptotic power of

any consistent test equals 1, no sensible Önite sample power comparison is made by

considering asymptotics under a Öxed alternative. A much more interesting asymp-

totics is obtained when the alternatives drift towards the null as the sample size

rises. In the unit roots literature, for example, such an analysis is called local-to-

unity asymptotics (see Stock (1994)). By analogy, the reader can call asymptotics (4)

local-to-non-pervasiveness asymptotics or, to avoid complicated terms, weak factors

asymptotics.

This paper answers the question: what is the Örst and the second order weak

factors asymptotics of the PC estimators of the factors and factor loadings. We

develop the Örst order asymptotics under the assumption that the matrix of the

idiosyncratic terms can be represented as e(n) = A(n)"(n)B(n); where A(n) and B(n) are

relatively unrestricted n � n and T (n) � T (n) matrices and "(n) is an n � T (n) matrix

with i.i.d. entries with mean zero, variance �2 and Önite fourth moment. Similar

assumptions have been previously made in Onatski (2005), Bai and Ng (2005) and

Harding (2006). The assumption allows the idiosyncratic terms to be non-trivially

correlated both cross-sectionally and over time. We discuss its relation to economic

models in Section 2.

Our main results refer to the k�k matrix Q � (F 0F )�1 F 0F̂ of the OLS coe¢ cients

in the regression of the PC estimates F̂ on the true factors F: Theorem 1 below shows2

that the probability limit of Q under the weak factors asymptotics is a diagonal matrix

with the diagonal elements strictly smaller than one. It further describes the diagonal

elements of plim Q as speciÖc functions of matrix D from (4), which measures the

Önite sample strength of factors; of �2; which scales the variance of the idiosyncratic

terms; and of the limiting empirical eigenvab134.733 -4.36(i)6(m)17((t)8(h)12(e61)8()0[g)11(r)11(e)9(c)9(s)-225(i)6(s)-224(a)-222(d)12(i)6(a)10(g)11(o)10(n)11(a)9(a)101(o)11(m)-388(()9(4))-222(d)76 0 Td[(�c)9(a)10(l)-300(e)]TJ/F51 7.97 Tf 5.478 4.338 Td[(55 Tf 12.619 0 Td[(851)]351 7.97 Tf 5.138 0 Td[())]TJ/F39 11.955 Tf 7.074 -4.338 Td[(a)10(n)12(d)]TJ/F53 11.955 Tf 22.139 0 Td[(B)]TJ/F51 7.97 Tf 9.49645e)9(l)6(y)-321(u)154 7.97 Tf 3.293 0 Td[(n)]TJh5 liare Anl and B Q



asymptoticsîwhere the factorsíexplanatory power is asymptotically inÖnitely larger

than that of the idiosyncratic terms, plim Q is the identity matrix so that the principal

components estimator F̂ is consistent for F .

We extend our analysis to the second order weak factors asymptotics only in

the special case when A(n) and B(n) are identity matrices and the elements of "(n)

are Gaussian. For this reason, our second order asymptotic results, described in

Theorems 2 and 3, are of little empirical relevance. They are, however, interesting

from a theoretical point of view.

Under the above restrictive assumptions, we Önd that the PC estimates of the

factors at particular time periods (or factor loadings corresponding to speciÖc cross-

sectional units) are inconsistent but asymptotically jointly normal, and we Önd ex-

plicit formulae for the corresponding asymptotic biases and covariance matrices. As

D tends to inÖnity so that the Önite sample cumulative e¤ects of the factors on the

cross-sectional units becomes larger and larger, the biases disappear. Moreover, our

second order asymptotic formulae converge to formulae found by Bai (2003) for the

case of strong factors. The Monte Carlo analysis shows that our asymptotic distri-

bution provides a better approximation for the Önite sample distribution than the

asymptotic distribution found by Bai (2003) even for relatively strong factors.



In the statistical literature, the weak factors asymptotics of the PC estimators

have been recently studied by Johnstone and Lu (2007) and by Paul (2007).3 For

a 1-factor model with i.i.d. Gaussian factor and i.i.d Gaussian idiosyncratic terms,

Johnstone and Lu (2007) show that the one-dimensional analog of our Q remains

separated from one as n and T go to inÖnity proportionately. Paul (2007) quantiÖes

the amount of the inconsistency pointed out by Johnstone and Lu (2007) for the

case of i.i.d. Gaussian data such that all but k distinct eigenvalues of the population

covariance matrix are the same. For the same model, Paul (2007) Önds the asymptotic

distribution of the eigenvectors corresponding to the k largest eigenvalues.

In contrast to Johnstone and Lu (2007) and Paul (2007), our Örst order asymptotic

analysis does not require the idiosyncratic terms be i.i.d. and Gaussian. Allowing the

idiosyncratic terms to be correlated is crucial for macroeconomic and Önancial appli-

cations. Further, our second order asymptotic analysis uses a substantially di¤erent

machinery than the proofs of Paul (2007), which allows us to relax his requirement

that factors are i.i.d. Gaussian.

The rest of the paper is organized as follows. In Section 2 we state our assumptions

and describe the Örst order asymptotic results. In Section 3 we describe the second

order asymptotic results. Monte Carlo analysis is given in Section 4. Section 5

concludes. All proofs are relegated to the Technical Appendix available from the

authorís web site at http://www.columbia.edu/~ao2027.

2 First order asymptotics

As explained in the Introduction, we study Önite samples of increasing dimensions

from a sequence of approximate factor models (1). Finite samples of the cross-

sectional size n and temporal size T (n) are summarized in n � T (n) matrices X(n);

which can be represented as:

X(n) = L(n)F (n)0 + A(n)"(n)B(n); (5)

where the parameters of the representation satisfy Assumptions 1, 2, and 3, described

below.
3Although these papers study the weak factor asymptotics they have a di¤erent motivation and

do not use ìweak factorîterminology.
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Assumption 1: There exist a positive constant c and a k � k diagonal matrix

D � diag (d1; :::; dk) ; d1 > ::: > dk > 0, such that, as n tends to inÖnity:

i) n=T (n) ! c;

ii) 1
T

F (n)0F (n) p! Ik;

iii) L(n)0L(n)
p! D.

Part i) of the assumption requires that n and T (n) be comparable even asymptot-

ically. It implies that, when n tends to inÖnity, T (n) also tends to inÖnity. Such a

simultaneous divergence to inÖnity stands in contrast to the classical assumption of

Öxed n and rising T: Parts ii) and iii) of the assumption describe the asymptotic nor-

malization of factors and the weak factors asymptotics, discussed in the Introduction,

respectively. Part iii) slightly generalizes (4) by replacing the ordinary convergence

by the convergence in probability. In particular, we allow both factors and factor

loadings be random.

In what follows, we will omit the superscript (n) from notations T (n); X(n); L(n);

F (n); A(n); "(n) and B(n) to make them easier to read. Let us denote the normal-

ized loadings L (L0L)�1=2



neker product of two matrices only in special cases. For example, in the spirit of Forni

and Lippi (1999, 2001), consider an n-industry constant-returns economy, where the

productions Xit in industries i = 1; :::; n at time t are given by the equations:0BBBB@
1 w12 : : : w1n

w21 1 : : : w2n

...
...

. . .
...

wn1 wn2 : : : 1

1CCCCA
0BBBB@

X1t

X2t

...

Xnt

1CCCCA =

0BBBB@
c1

c2
...

cn

1CCCCAFt +

0BBBB@
b1(L)"1t

b2(L)"2t
...

bn(L)"nt

1CCCCA ;

where Ft is a demand common shock, bi(L)"it are autocorrelated idiosyncratic pro-

ductivity shocks, and "it are i.i.d. innovations to these shocks. For such a model, wji

is the quantity of the i-th product necessary as a means of production to produce one

unit of the j-th output. Inverting the input-output matrix W , we obtain:

Xt = �Ft + W�1"tb(L);

where b(L) � diag (b1(L); b2(L); :::; bn(L)). In the special case when all bi(L) with

i = 1; :::; n are the same so that all the productivity shocks have the same dynamics

described by a Ölter b0 + b1L + b2L
2 + :::, we can write: e = A"B; where A = W�1

and B is such that Bij = 0 for for i > j and Bij = bj�i for for i � j:4

Note that, for the above application, matrix B is Toeplitz. Such a form of B is

a consequence of the stationarity of the data. In this paper, we do not constrain

B be Toeplitz. In fact, matrices A and B may have similar properties. Hence, we

allow as much non-stationarity in the time dimension as there is in the cross-sectional

dimension.

There are several reasons to restrict A and B as in parts ii) and iii) of Assumption

2. First, the main justiÖcation of the PC estimator of approximate factor models

is that for a Öxed model, the factor loadings and the factors asymptotically span

the subspace of the Örst k principal eigenvectors of E (XX 0jL) and E (X 0XjF ) ;

respectively. For the weak factors asymptotics this is not necessarily so. Condi-

tions ii) and iii) of Assumption 2 reconcile the weak factors asymptotics with the

PC method by implying that E (XX 0jL) = LE (��0jL) L0 + �2T
Pn

i=1 a2iLiL0i and

E (X 0XjF ) = FE (�0�jF ) F 0+�2n
PT

i=1 b2iFiF 0
i so that L and F span the subspaces

of the corresponding k principal eigenvectors.

4Here we assume that the innovations "it for t = 0;�1;�2; ::: equal zero.
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The constraints max
j=1;:::;n

a2i < �L

�2T
+ 1 and max

j=1;:::;T
b2i < �F

�2n
+ 1 make sure that L and

F span the principal eigenspaces, that is, the spaces corresponding to the k largest

eigenvalues, as opposed to some other eigenspaces. The constraints ai = 1 for i � k

and
Pn

i=1 a2i = n make possible the separate identiÖcation of �2 and fai; i = 1; :::; ng
from E (XX 0jL) : Similarly, the constraints bi = 1 for i � k and

PT
i=1 b2i = T make

possible the separate identiÖcation of �2 and fbi; i = 1; :::; Tg from E (X 0XjF ) :

The second reason to impose constraints ii) and iii) is related to the Örst one.

By making the spaces spanned by L and F the principal eigenspaces of E
�
1
T

XX 0jL
�

and E
�
1
n
X 0XjF

�
; we identify them even in Önite samples, which allows us to un-

ambiguously discuss the Önite sample performance of the PC estimator. Without

such an identiÖcation, no information about F and L can be extracted from a Önite

sample. Indeed, for any ~L and ~F ; we always can represent LF 0 + e as ~L ~F 0 + ~e with

~e =
�

LF 0 � ~L ~F 0
�

+ e and justify such a representation by saying that the future

observations will reveal that the loadings and factors are consistent with ~L and ~F

rather than with L and F:

Third, parts ii) and iii) of Assumption 2, while being restrictive, do allow for non-

trivial cross-sectional and temporal correlation of the idiosyncratic terms. In addition,

they allow us to use large random matrix machinery, which facilitates our proofs. Our

next assumption supplies additional asymptotic requirements which allow us to use

large random matrix theory results established in Zhang (2006), Paul and Silverstein

(2008) and Onatski (2005).

To formulate the next assumption we introduce new notation. Let �1(M) � ::: �
�n(M) be the eigenvalues of a generic n � n symmetric matrix M: We deÖne the

eigenvalue distribution function for M as

FM(x) = 1 � 1

n
# fi � n : �i(M) > xg ; (6)

where # f�g denotes the number of elements in the indicated set. Note that FM(x)

is a valid cumulative probability distribution function (cdf). Further, for a generic

probability distribution having a bounded support and cdf G(x); let u(G) be the upper

bound of the support, that is u(G) = min fx : G(x) = 1g :

Assumption 3: As n and T go to inÖnity:

i) FAA0 and FB0B weakly converge to probability distribution functions with bounded

support FA and FB; respectively,
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ii) u
�
FAA0

�
! u(FA) > 0 and



(9) has no solutions; for w = �w; the system has exactly one solution, which we will

denote as �u and �v; and for w > �w; the system has two solutions (u1w; v1w) and

(u2w; v2w) such that v2;w > v1;w and u2;w > u1;w: For each x > �w (1 � �u�1) (1 � �v�1) ;

let us deÖne w(x); u(x) and v(x) as w; u2w and v2w; respectively, which satisfy6

x = w
�
1 � (u2;w)�1

� �
1 � (v2;w)�1

�
:

Theorem 1: Let Assumptions 1-3 hold and q be such that di

�2 > �w (1 � �u�1) (1 � �v�1)

for i � q; and di

�2 � �w (1 � �u�1) (1 � �v�1) for i > q. For any i � q; deÖne

wi = w
�
di

�2

�
; ui = u

�
di

�2

�
; vi = v

�
di

�2

�
; rui =

R �
a

ui�a

�2
dFA(a)=

R
a

ui�adFA(a) and

rvi =
R �

b
vi�b

�2
dFB(b)=

R
b

vi�bdFB(b) Then, as n (and by Assumption 1 i) also T )

goes to inÖnity:

i) The matrix coe¢ cient Q from (7) converges to a diagonal matrix with non-negative

diagonal elements strictly smaller than one so that:

Q2
ii

p!
�
1 +

1 + rvi
vi (1 � ruirvi)

�
rui +

vi � 1

ui � 1

���1
for i � q and

Q2
ii

p! 0 for i > q;

ii) The matrix coe¢ cient P from (8) converges to a diagonal matrix with non-

negative diagonal elements strictly smaller than one so that:

P 2
ii

p!
�
1 +

1 + rui
ui (1 � ruirvi)

�
rvi +

ui � 1

vi � 1

���1
for i � q and

P 2
ii

p! 0 for i > q;

iii) Matrix L̂0L̂ converges to a diagonal matrix so that�
L̂0L̂
�
ii

p! �2wi for i � q and�
L̂0L̂
�
ii

p! �2 �w for i > q:

6It is easy to solve for �w; �u; �v; w(x); u(x) and v(x) numerically for any distribution functions FA

and FB : It is because
�
c
R

au
u�adF

A(a)
��1

and
�R

bv
v�bdF

B(b)
��1

are strictly concave functions of

u and v and w
�
1� (u2w)�1

��
1� (v2w)�1

�
is a strictly increasing function of w: A matlab code,

which implements the solution is available from the author upon request.
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Let us illustrate the results of the theorem using an example. Suppose data are

generated by the following 1-factor model:

Xit =
p

dTL1iF1t + eit; where (10)

eit = �1ei�1;t + c1�it and

�it = �2�it�1 + c2�it; �it � iidN(0; 1)
:

Here
p

dL1 is the vector of loadings,
p

TF1 is the factor, and the idiosyncratic terms

eit follow auto-regressions both temporally and cross-sectionally.

Note that vec (e) is an nT � 1 Gaussian vector with covariance matrix T2 
 T1;

where T1 and T2 are Toeplitz matrices with i; j-th entries equal to c21�
ji�jj
1 = (1 � �1)

and c22�
ji�jj
2 = (1 � �2) ; respectively. Therefore, e can be represented in the form A"B,

where " is an n � T matrix with iidN(0; 1) entries, A = LA0 with L being an n � n

matrix of eigenvectors of T1 and A0 being the diagonal matrix of the square roots

of the corresponding eigenvalues of T1; and B = B0F 0 with F being a T � T matrix

of eigenvectors of T2 and B0 being the diagonal matrix of the square roots of the

corresponding eigenvalues of T2:

As is required by Assumption 2, we will assume that L1 and F1 are the Örst

columns of L and F ; respectively. Constants c1 and c2 will be chosen so that the

normalization required by Assumption 2 holds. As to Assumption 3; note that AA0 =

T1 and B0B = T2: The form of the limiting empirical distribution of eigenvalues of

Toeplitz matrices, as their dimensionality grows, is well known (see, for example,

Grenander and Szego, 1958). For the special case of the Toeplitz matrices T1 and T2;

Assumption 3 is satisÖed for j�1j < 1 and j�2j < 1:

To begin with, we calibrate our example (10) so that the generated data resemble

those from Boivin et al. (2008). Boivin et al. (2008) perform a factor analysis of

European quarterly macroeconomic time series. Even after extracting seven factors

from that data, the residuals remain highly auto-correlated. We will set �2 = 0:9

to represent strong serial correlation of such residuals. We will also introduce a

mild degree of the cross-sectional correlation by setting �1 = 0:5: Finally, we will set

n=T = 2 so that the cross-sectional dimension is twice as large as the time series

dimension. The actual data in Boivin et al. (2008) have n = 245 and T = 111:

12
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Figure 1: Plots of p lim Q2 against d
d+n

for n = 50; 100 and 200:

For such a calibrated example, we have computed the probability limits of Q2; P 2

and L̂0L̂ described in Theorem 1 as functions of d:7 Let us deÖne the population R2 of

the factor as R2 � E trLF 0FL0=T
E trXX0=T = d

d+n
. The sample counterpart of this quantity is the

actual R2 from Ötting 1-factor model to the data. It equals L̂0L̂
trXX0=T � p lim L̂0L̂

p lim L̂0L̂+n
: We

will call the latter approximation the sample R2: Figure 1 shows the plots of plim Q2

versus the population R2 = d
d+n

for n = 50; 100 and 200. Figure 2 shows the the plots

of the sample R2 versus the population R2 = d
d+n

for n = 50; 100 and 200.

We see that the PC estimators of factors remain orthogonal to the true factors

until the population R2 becomes very large. The Pitman drift asymptotics, which

we use in this paper to model weak factors, implies that as n tends to inÖnity; the

population R2 tends to zero for any Öxed d: This fact explains the left shift of the

plots in Figure 1 as n grows. For n = 200; even if a single factor explains 17% of

variance in the data, the corresponding PC estimate will be orthogonal to it. For

n = 100; a single factor must explain more than 30% of the dataís variance before

PC estimate becomes sensible. For n = 50; the explanatory power required to obtain

sensible PC estimate becomes extremely large: 45% of the dataís variance!

7The variance of "it; �2; equals 1.

13



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

population R2

sa
m

pl
e 

R2

Sample versus population explanatory power of a single factor

n=200

n=100

n=50

Figure 2: Plots of p lim L̂0L̂
p lim L̂0L̂+n

against d
d+n

for n = 50; 100 and 200:

To make a PC analyst even more miserable, Figure 2 reveals that the sample R2

from Ötting a single factor to the data may be very large even in cases when the

factors are de facto very weak. According to our asymptotic analysis, in the extreme

case when there are no factors in the data at all (d = 0), the sample R2 would be

around 0.19 for n = 200; around 0.32 for n = 100 and around 0.49 (!) for n = 50.

These results accord well with Uhlig (2008) who is surprised to Önd a large R2 (around

0.20) from Ötting a 1-factor model to cross-sectionally independent (hence, there are

no factors in the data) but temporally persistent data, which mimics Boivin et al.

(2008).

The only positive news for the PC analysis with weak factors contained in Figures

1 and 2 is that, once the population R2 goes above certain threshold, the quality of the

PC estimator quickly improves. The correlation between the true and the estimated

factor quickly approaches 1, and the sample R2 becomes very well approximated by

the population R2:

For the idiosyncratic covariance structures which are di¤erent from (10), the prob-

ability limits of Q2; P 2 and L̂0L̂ will vary. Theorem 1 explains how. Tables 1 and 2

illustrate the nature of this variation. The rows and columns of the tables correspond
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to di¤erent choices of the cross-sectional and temporal AR(1) coe¢ cients �1 and �2

in (10), respectively.

Table 1: Threshold for the population R2 (in percentage points) of a single factor,
below which the PC estimates of factors and factor loadings are orthogonal to the
true factors and true factor loadings. The population R2 is measured by d=(d + n),
n = 100. Di¤erent choices of �1 and �2 are in the rows and columns, respectively.

�1n�2 0 0.2 0.4 0.6 0.8 0.9 0.95
0 1.4 2.0 3.6 6.8 15.0 27.7 44.2
0.2 1.7 2.3 3.9 7.1 15.3 27.9 44.4
0.4 2.6 3.1 4.8 8.0 16.3 28.8 45.0
0.6 4.3 4.9 6.6 9.9 18.3 30.6 46.4
0.8 9.1 9.7 11.4 14.9 23.1 34.8 49.5
0.9 17.1 17.7 19.4 22.7 30.4 40.9 53.9
0.95 29.4 29.8 31.3 34.2 40.6 49.3 59.9

Table 1 reports the threshold �w (1 � �u�1) (1 � �v�1) = ( �w (1 � �u�1) (1 � �v�1) + n)

for the population R2; below which the PC estimates of factors and factor loadings

are orthogonal to the true factors and true factor loadings. Table 2 reports the

asymptotic approximation �w= ( �w + n) to the sample R2 from Ötting a single factor to

the data which have, in fact, no factors in them. For both Table 1 and Table 2, we

set n = 100: We see that both the threshold for the population R2 and the sample

R2 in the absence of factors quickly rise when the amount of the cross-sectional and

temporal idiosyncratic correlation increase. This means that the PC estimator would

be highly inaccurate even for very ináuential factors as long as the amount of the

idiosyncratic correlation is relatively high.

Table 2: The sample R2 (in percentage points) from Ötting one factor when there
are no factors. The sample R2 is approximated by plimL̂0L̂/(plim(L̂0L̂)+n), n = 100.
Di¤erent choices of �1 and �2 are in the rows and columns, respectively.

�1n�2 0 0.2 0.4 0.6 0.8 0.9 0.95
0 5.5 6.1 7.6 10.8 18.8 30.9 46.4
0.2 5.8 6.3 7.9 11.0 19.0 31.1 46.6
0.4 6.7 7.2 8.7 11.8 19.8 31.7 47.1
0.6 8.6 9.1 10.5 13.6 21.5 33.2 48.1
0.8 13.6 14.0 15.4 18.3 25.9 36.9 50.9
0.9 21.6 22.0 23.2 25.9 32.8 42.6 55.0
0.95 33.3 33.6 34.7 36.9 42.6 50.6 60.7
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In the very special case when A and B are identity matrices so that the idiosyn-

cratic terms lack cross-sectional and temporal correlation, the formulas of Theorem 1

considerably simplify. We obtain such a simpliÖed formulas and extend our analysis

to the second order asymptotics in the next section.

3 Second order asymptotics

In this section, we study the second order weak factors asymptotics. To establish

the second order asymptotic results, we will use the following assumptions which are

stronger than the corresponding assumptions in the previous section.

Assumption 1a: There exist a scalar c > 0 and a k � k diagonal matrix D �
diag (d1; :::; dk) ; d1 > ::: > dk > 0, such that, as n tends to inÖnity:

i) n=T (n) � c = o
�
n�1=2

�
;

ii)
p

T
�
1
T

F (n)0F (n) � Ik
� d! �; where entries of � have a joint normal distribution

(possibly degenerate) with covariance function cov (�st; �s1t1) � �sts1t1 ;

iii) L(n)0L(n)� D = op
�
n�1=2

�
; where the equality should be understood in the element

by element sense.

Assumption 1a i) strengthens Assumption 1 i) by requiring that the convergence

n=T (n) ! c is faster than n�1=2: Such a requirement eliminates any possible e¤ects of

this convergence on our second order asymptotic results. In our opinion, the behavior

of n=T (n) is likely to be application-speciÖc and any consequential assumption about

the rate of convergence of n=T (n) will be arbitrary. The assumption about the rate

of convergence of L(n)0L(n) to D is made for the same reason.

The high-level assumption about the convergence of
p

T (n)
�

1
T (n) F (n)0F (n) � Ik

�
is important because parameters �sts1t1 enter our second order asymptotic formulae

established below. A primitive assumption that implies the convergence is that the

individual factors can be represented as inÖnite linear combinations, with absolutely

summable coe¢ cients, of i.i.d. random variables with a Önite fourth moment (see

Anderson (1971), Theorem 8.4.2). In the special case when the rows of F (n); F
(n)
t� with

t = 1; :::; T (n); are i.i.d. standard multivariate normal, the covariance function of the

asymptotic distribution of
p

T (n)
�

1
T (n) F (n)0F (n) � Ik

�
has a particularly simple form:

�iji1j1 = 2 if (i; j) = (i1; j1) and i = j; �iji1j1 = 1 if (i; j) = (i1; j1) or (i; j) = (j1; i1)

and i 6= j; and �iji1j1 = 0 otherwise.
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Assumption 2a: i) "(n) is an n � T (n) matrix with i.i.d. N(0; �2) entries "it

independent from F and L;

ii) A(n) = In;

iii) B(n) = IT :

This assumption is essential for our derivations of the second order asymptotics.

It is too restrictive for our second order results to be of empirical relevance. However,

the results are interesting from the theoretical point of view. Since matrices A(n)

and B(n) that we consider in this section are trivial, we do not need any analog of

Assumption 3. As in the previous section, we will omit the superscript (n) from our

notations to make them easier to read.

For any q � k; denote the matrix of the Örst q columns of F̂ as F̂1:q; and let F?
q

be a T � q matrix with columns orthogonal to the columns of F such that the joint

distribution of its entries conditional on F is invariant with respect to multiplication

from the left by any orthogonal matrix having span (F ) as its invariant subspace.

Similarly, denote the matrix of the Örst q columns of L̂ as L̂1:q and let L?q be an n � q

random matrix with columns orthogonal to the columns of L and such that the joint

distribution of its entries conditional on L is invariant with respect to multiplication

from the left by any orthogonal matrix having span (L) as its invariant subspace. We

establish the following

Theorem 2: Let q be such that di >
p

c�2 for i � q; and di �
p

c�2 for i > q:

Let Assumptions 1a and 2a hold and let, in addition, �ijst = 0 when (i; j) 6= (s; t)

and (i; j) 6= (t; s) : Then,

i) T F̂1:q = F ~Q + F?
q with ~Q = ~Q(1) + 1p

T
~Q(2); where ~Q(1) is diagonal with ~Q

(1)
ii =q

d2
i��4c

di(di+�2)
; and vec ~Q(2) is an asymptotically zero mean Gaussian vector with

Acov
�

~Q
(2)
ij ; ~Q

(2)
st

�
given by the following formulae:

a) (d2
j+�

2di)
(dj�di)

2 + (�ijij � 1)
dj(d2

j�c�4)
(dj+�2)(dj�di)

2 if (i; j) = (s; t) and i 6= j

b)
p
didj

q
(di+�2)(dj+�2)(d2

i�c�4)(d2
j�c�4)

(dj�di)
2(c�4�didj)

�
�
�ijij � 1

� p
didj

q
(d2

i�c�4)(d2
j�c�4)

(dj�di)
2
p
(dj+�2)(di+�2)

if (i; j) =

(t; s) and i 6= j

c) (c2�8+d4
i )(di+�

2)
2di(d2

i�c�4)
2 + di�

4(c�1)
2(d2

i�c�4)(di+�2)
+ (�iiii � 2)

�
(di+�

2)
2��4(1�c)

�2
di

4(d2
i�c�4)(di+�2)3

if (i; j) =

(t; s) and i = j
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d) 0 if (i; j) 6= (s; t) and (i; j) 6= (t; s)

ii) L̂1:q=L ~P + L?q with ~P = ~P (1) + 1p
T

~P (2); where ~P (1) is diagonal with ~P
(1)
ii =q

d2
i��4c

di(di+�2c)
; and vec ~P (2) is an asymptotically zero mean Gaussian vector with

Acov
�

~P
(2)
ij ; ~P

(2)
st

�
given by the following formulae:

a)
dj(dj+�

2)(di+�
2)+di(�ijij�1)(d2

j��4c)
(dj+�2c)(dj�di)

2 if (i; j) = (s; t) and i 6= j

b) �
p
didj

q
(d2

i��4c)(d2
j��4c)

(dj�di)
2
p
(di+�2c)(dj+�2c)

�
�ijij � 1 +

(dj+�
2)(di+�

2)
(didj�c�4)

�
if (i; j) = (t; s) and

i 6= j

c)
c�4di(di+�

2)
2

2(di+c�2)(d2
i�c�4)

2

�
1 + c

�
di+�

2

di+c�2

�2�
+(�iiii � 2)

�
(di+�

2)
2��4(1�c)

�2
c2�4

4di(d2
i��4c)(di+c�2)3

if (i; j) =

(t; s) and i = j

d) 0 if (i; j) 6= (s; t) and (i; j) 6= (t; s)

iii) Matrix L̂01:qL̂1:q = W (1) + 1p
T

W (2); where W (1) is a diagonal matrix with W
(1)
ii =

(di+�
2)(di+�

2c)
di

and vec W (2) is an asymptotically zero mean Gaussian vector

with Acov
�

W
(2)
ij ; W

(2)
st

�
given by the following formulae:

a) �iiss
(d2

i��4c)(d2
s��4c)

dids
+2�is�

2 (2di + c�2 + �2)
d2

i��4c

d2
i

if i = j and s = t; where

�is denotes the Kronecker delta.

b) 0 otherwise.

Theorem 2 can be used to obtain the asymptotic distributions of the principal

components estimator of factors at particular time periods or factor loadings corre-

sponding to speciÖc cross-sectional units. We Önd such distributions in the following

theorem:

Theorem 3: Suppose the assumptions of Theorem 2 hold. Let � 1; :::; � r be such

that the probability limits of the � 1-th; :::; � r-th rows of matrix F=
p

T as n and T

approach inÖnity exist and equal �F�1�; :::; �F�r�. Similarly, let j1; :::; jr be such that the

limits of the j1-th; :::; jr-th rows of matrix L as n and T go to inÖnity exist and equal
�Lj1�; :::; �Ljr�: Then,



i) Random variables
n

F̂�gi � ~Q
(1)
ii F�gi : g = 1; :::; r; i = 1; :::; q

o
are asymptotically

jointly mean-zero Gaussian. The asymptotic covariance between

F̂�si � ~Q
(1)
ii F�si and F̂�fp � ~Q

(1)
pp F�fp equals

Xk

s=1

�F�gs
�F�f s Avar

�
~Q
(2)
si

�
+
�

�gf �
Xk

s=1

�F�gs
�F�f s

��
1 �

�
~Q
(1)
ii

�2�
;

when i = p and

� �F�gp
�F�f i Acov

�
~Q
(2)
pi ; ~Q

(2)
ip

�
; when i 6= p:

ii) Random variables
np

T
�

L̂jgi � ~P
(1)
ii Ljgi

�
; g = 1; :::; r; i = 1; :::; q

o
are asymp-

totically jointly mean-zero Gaussian. The asymptotic covariance betweenp
T
�

L̂jgi � ~P
(1)
ii Ljgi

�
and

p
T
�

L̂jfp � ~P
(1)
pp Ljfp

�
equals

Xk

s=1

�Ljgs �Ljf s Avar
�

~P
(2)
si

�
+
�

�gf �
Xk

s=1

�Ljgs �Ljf s
��

1 �
�

~P
(1)
ii

�2�
;

when i = p and

� �Ljgp �Ljf i Acov
�

~P
(2)
pi ; ~P

(2)
ip

�
; when i 6= p:

Allowing for non-zero limits �F�1�; :::; �F�r� takes into account a possibility that spe-

cial time periods exist for which the values of some or all factors are ìunusuallyî

large. Alternatively, non-zero limits �F�1�; :::; �F�r� can be viewed as a device to improve

asymptotic approximation for relatively small T when the rows of F=
p

T are not

expected to be small. A similar interpretation holds for �Lj1�; :::; �Ljr�:
Theorem 2 can be compared to Theorem 1 of Bai (2003). He Önds that, under

the strong-factor asymptotics,
p

n
�

F̂t� � H 0Ft�

�
d! N (0; 
) ; where H and 
 are

matrices that depend on the parameters describing factors, loadings, and noise. For

our normalization of factors and factor loadings, it can be shown that H equals

the identity matrix and 
 must be well approximated by n�2D�1 in large samples:

Hence, Baiís asymptotic approximation of the Önite sample distribution of F̂ti � Fti

can be represented as N
�

0; �
2

di

�
: The variance of the latter distribution is close to

our asymptotic variance
�2(di+�

2c)
di(di+�2)

when di is very large or if c is close to 1. Note that

the multiplier ~Q
(1)
ii ; causing the inconsistency of F̂ti in our case, becomes very close

to 1 as di increases. Hence, Baiís asymptotic formula is consistent with ours in the
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case of factors with very large cumulative e¤ects on the cross-sectional units.

For the special case when the factors are i.i.d. k-dimensional standard normal

variables, the formula for the asymptotic covariance of the components of L̂ simpliÖes.

We have:

Corollary 2: Suppose that, in addition to the assumptions of Theorem 2, the

factors Ft� are i.i.d. standard multivariate normal random variables. Then, for any

i � q :

i)
p

T
��

L̂j1i � ~P
(1)
ii Lj1i

�
; :::;

�
L̂jri � ~P

(1)
ii Ljri

��
d! N (0; �) ; where

�gf =
kX
s=1
s 6=i

�Ljgs �Ljf s
di (di + �2) (ds + �2)

(di + c�2) (di � ds)
2 +

 
�gf �

kX
s=1

�Ljgs �Ljf s

!
�2 (di + �2)

di (di + c�2)

+ �Ljgi �Ljf i
c�4di (di + �2)

2

2 (di + c�2) (d2i � c�4)
2

 
1 + c

�
di + �2

di + c�2

�2!
;

ii) L̂01:qL̂1:q = W (1)+ 1p
T

W (2); where W (1) is a diagonal matrix with W
(1)
ii =

(di+�
2)(di+�

2c)
di

and vec W (2) is an asymptotically zero mean Gaussian vector with Acov
�

W
(2)
ij ; W

(2)
st

�
given by the following simpliÖed formulae:

Acov
�

W
(2)
ij ; W

(2)
st

�
= 2

�
di + �2

�2�
1 � �4c

d2i

�
if i = j = s = t and

Acov
�

W
(2)
ij ; W

(2)
st

�
= 0 otherwise.

Note that when factors are i.i.d. Gaussian random variables, the PC estimator of

the normalized factor loadings is the maximum likelihood estimator. Its asymptotic

distribution in the case of Öxed n and large T is well known. According to Theorem

13.5.1 of Anderson (1984), in such a case:

p
T
�

L̂�i � L�i
�

! N (0; �) ; (11)

where

�gf =

nX
s=1
s 6=i

LgsLfs
(di + �2) (ds + �2)

(di � ds)
2 (12)
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and it is understood that L�s is deÖned as the eigenvector of the population covari-

ance matrix corresponding to the s-th largest eigenvalue, and ds = 0 for s > k.

Note that
Xn

s=k+1
LgsLfs = �gf �

Xk

s=1
LgsLfs because the matrix of ìpopulation

eigenvectorsîis orthogonal. Therefore, we can rewrite (12) as

�gf =

kX
s=1
s 6=i

LgsLfs
(di + �2) (ds + �2)

(di � ds)
2 +

 
�gf �

kX
s=1

LgsLfs

!
�2 (di + �2)

d2i
: (13)

Since in the classical case n is Öxed, the requirement that rows of L have limits as

T approaches inÖnity is trivially satisÖed. For the same reason, there is no need to

focus attention on a subset of components j1; :::; jr of the ìpopulation eigenvectorsî,

so that formula (11) describes the asymptotic behavior of all components of L�i: More

substantially, the large dimensionality of the data introduces inconsistency (towards

zero) to the components of L̂�i viewed as estimates of the corresponding components

of L�i: Indeed, from Corollary 2, we see that the probability limit of L̂jsi equals Ljsi
multiplied by 0 � ~P

(1)
ii < 1. Comparing � and �; we see that the high dimensionality

of data introduces a new component to the asymptotic covariance matrix, which

depends solely on the limits of the components of the i-th ìpopulation eigenvectorî.

At the same time, it reduces the ìclassical componentîof the asymptotic covariance

by multiplying it by di

di+c�2 : As c becomes very small, our formula for �gf converges

to the classical formula for �gf : Moreover, the bias of the PC estimator of factor

loadings, as measured by the di¤erence between matrix ~P and the identity matrix,

disappears as should be the case, intuitively.

Note that in a less special case when factors are not i.i.d but follow a Gaussian

vector autoregression, we could have improved on the PC estimator by using maxi-

mum likelihood, based on Kalman Öltering as in Doz et al. (2006). The authors of

that paper use Monte Carlo experiments to show that the PC estimator is dominated

by such a Kalman Öltering procedure even if Assumption 2a is violated and the idio-

syncratic terms are cross-sectionally and temporally correlated.8 Although there is



may reduce weak-factor-related bias of the PC, at least in some situations. We leave

a study of such a possibility for future research.

4 A Monte Carlo study

In this section we will perform a Monte Carlo analysis to check whether our asymptotic

results approximate Önite sample situations well. First, we simulate data having

1-factor structure where fFt; t = 1; :::; Tg is an AR(1) Gaussian process with AR

coe¢ cient 0.5 and variance 1 and where factor loadings fLi; i = 1; :::; ng are i.i.d.p
d=nN(0; 1) random variables. For the idiosyncratic terms, we take the empirical

distributions FAA0 and FB0B as in our example (10) with �A = 0:5 and �B = 0:9 and

we set "it be i:i:dN(0; 1) random variables:

We simulate 1,000 replications of the data for d= (d + n) on the grid 0:0.01:0.99.

For each simulation, the matrices F � [F1; :::; FT ] and L � [L1; :::; LT ] used to de-

Öne the idiosyncratic terms (see Assumption 2) are chosen randomly from the set

of all matrices which complement F1 � (F 0F )�1=2 F and L1 � (L0L)�1=2 L to the

orthonormal basis.

The left panel of Figure 3 shows the theoretical probability limits from Theorem

1 (dashed lines) and the Monte Carlo medians and 10% and 90% percentiles (solid

lines) of the square of the regression coe¢ cient Q in the regression of F̂ on F as

functions of the population R2; which equals d= (d + n). The right panel of Figure 3

shows the theoretical probability limits and the Monte Carlo medians and 10% and

90% percentiles of the sample R2 as functions of the population R2:

We see that, overall, the theoretical limits do a good job of approximating the

corresponding Önite sample relationships. For very small n and T , the Monte Carlo

distributions are very dispersed. They become less dispersed and the theoretical

approximations become more and more informative as n and T rise. The theoreti-

cal limits for the squared correlation coe¢ cient between the true and the estimated

factor are under-predicting for relatively small values of the population R2 and over-

predicting for relatively large values of the population R2: The degree of the over-

and under-prediction diminishes as n and T rise.

We repeated the above MC experiment with �A = 0:5 and �B = 0:5 (instead

of �A = 0:5 and �B = 0:9). Qualitatively, the results remain the same although

the MC distribution becomes less dispersed for the same values of n and T: Next,
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Figure 3: Square of the correlation coe¢ cient between true and estimated factor (left
panel) and the sample R2 from Ötting a single factor (right panel). Theoretical values:
dashed line, 10, 50, and 90 MC percentiles: solid lines. Upper panel: n = 50; T = 25,
middle panel: n = 100; T = 50, lower panel: n = 200; T = 100.
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we again set �A = 0:5 and �B = 0:9, but consider a relatively fat-tailed and a

skewed distribution for "it: Precisely, we consider Studentís t distribution with Öve

degrees of freedom, normalized to have unit variance, and the centered chi-squared

distribution with one degree of freedom, normalized to have unit variance. For such a

non-normal distributions, the results are very similar to those shown in Figure 3, and

we do not report them to save space. Finally, we have repeated our MC experiment

with �A = 0:5 and �B = 0:9; but without respecting Assumption 2 in that the

matrices F � [F1; :::; FT ] and L � [L1; :::; LT ] used to deÖne the idiosyncratic terms

in Assumption 2 are chosen independent from F and L. Again, the results obtained

were very similar to those reported in Figure 3 and we do not report them here.

To assess the Önite sample quality of our second-order asymptotic results, we

perform three di¤erent MC experiments. The setting of our Örst experiment is as

follows. We simulate 1000 replications of data having 1-factor structure with n = 40;

T = 20; where Ft1 is an AR(1) process with AR coe¢ cient 0.5 and variance 1;

�2 = 1; Li1 =
p

d=n; and d is on a grid 0.1:0.1:20. We repeat the experiment for

n = 200; T = 100: Figure 2 shows the Monte Carlo and theoretical means and

5% and 95% quantiles of the regression coe¢ cient in the regression of F̂ on F as

functions of d. Smooth solid lines correspond to the theoretical lines obtained using

formulae of Theorem 2. According to that theorem, the regression coe¢ cient should

be equal to ~Q(1) + 1p
T

~Q(2): Note that the theoretical lines do not start from d = 0:1:

It is because our second order formulae are valid for d larger than the threshold

�w (1 � �u�1) (1 � �v�1), which is equal to
p

2 in all Monte Carlo experiments below.

Rough solid lines correspond to the Monte Carlo sample data. The left panel is for

n = 40; T = 20: The right panel is for n = 200; T = 100:

The theoretical mean of the regression coe¢ cient, Q(1); approximates the Monte

Carlo mean reasonably well for n = 40; T = 20 and very well for n = 200; T =

100: For relatively small cumulative e¤ects of the factor, the asymptotic quantiles

tend to overestimate the amount of Önite sample variation in the coe¢ cient. When

the cumulative e¤ect approaches the threshold
p

2; the amount of overestimation

explodes.

In our next experiment, we simulate 1000 replications of data having 2-factor

structure with n = 40; T = 20; where Ft1 and Ft2 are i.i.d. N (0; 1) ; �2 = 1; and the

factor loadings are deÖned as follows. We set L0�1L�6 0 0 3 0 Td[(L)]TJ/F57 7.97 TJ/F54 7f 10.405 .st 9.272 4.92
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Figure 3: Monte Carlo and theoretical means and 5% and 95% quantiles of the
regression coe¢ cient in the regression of F̂ on F as functions of d: Horizontal axis:
d. Left panel: n = 40; T = 20; right panel: n = 200; T = 100:

the threshold, and the cumulative e¤ect of the second factor is only 2 times the

threshold. The vectors of loadings are designed so that their Örst two components are

ìunusuallyî large and the other components are equal by absolute value. Precisely,

L11 = L21 =
�
10

p
2=3
�1=2

; Li1 =
�
10

p
2=3 (n � 2)

�1=2
for i > 2; and L12 = �L22 =

�
�
2
p

2=3
�1=2

; Li1 = (�1)i
�
2
p

2=3 (n � 2)
�1=2

for i > 2:

Figure 3 shows the results of the second experiment. The upper three graphs

correspond to the joint distributions of (from left to right) the (1st, 2nd), (2nd, 3rd),

and (3rd, 4th) components of the normalized (to have unit length) vector of factor

loadings corresponding to the Örst factor. The bottom three graphs correspond to the

joint distributions of the same components of the normalized vector of factor loadings

corresponding to the second factor. The dots on the graphs correspond to the Monte

Carlo draws, the solid lines correspond to 95% conÖdence ellipses of our theoretical

asymptotic distribution (see Corollary 2), the dashed lines correspond to the 95%

conÖdence ellipses of the classical asymptotic distribution (see equation 13), and the

dotted lines correspond to the 95% conÖdence ellipses of the asymptotic distribution

under the ìstrong factorîrequirement.

Starting from the upper left graph and going in a clockwise direction, the percent-

age of the Monte Carlo draws falling inside our ellipse, a classical ellipse, and a ìstrong

25



0.2 0.4 0.6 0.8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

­

0

.

1

0

Figure 4: Monte Carlo draws and 95% asymptotic conÖdence ellipsoids for (from left
to right) (1st, 2nd), (2nd, 3rd), (3rd, 4th) components of the normalized vectors of
factor loadings. Upper panel: loadings correspond to the Örst factor. Lower panel:
loadings correspond to the second factor. Solid line: our asymptotics. Dashed line:
classical asymptotics. Dotted line: ìstrong factorîasymptotics.
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Figure 5: Monte Carlo and asymptotic means and 5% and 95% quantiles of the



5 Conclusion

In this paper we have introduced a weak factors asymptotics framework which allows

us to assess the Önite sample properties of the PC estimator in the situation when

factorsíexplanatory power does not strongly dominates the explanatory power of the

cross-sectionally and temporally correlated idiosyncratic terms. We have shown that

the principal components estimators of factors and factor loadings are inconsistent

and found explicit formulae for the amount of the inconsistency. For the special case

when there are no cross-sectional and temporal correlation in the idiosyncratic terms,

we have shown that the PC estimators, although inconsistent, are asymptotically

normal, and we have found explicit formulae for the asymptotic covariance matrix

of the estimators. Our Monte Carlo analysis suggests that our asymptotic formulae

work well even for relatively small n and T:
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